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Abstract- We propose a new method based on evolutionary op-

timization for obtaining an optimalLp-quantizer of a multidimen-

sional random variable. First, we remind briefly the main results

about quantization. Then, we present the classical gradient-based

approach (this approach is well detailed in [2] and [7] for p=2)

used up to now to find a “local” optimalLp-quantizer. Then, we

give an algorithm that permits to deal with the problem in the evo-

lutionary optimization framework and illustrate a numerical com-

parison between the proposed method and the stochastic gradient

method. Finally, a numerical application to option pricing in fi-

nance is provided.

1 Introduction
Quantization is asignal processingtechnique that consists

in approximating a random variableX with values in a con-

tinuous state space by an other random variable with values

in a finite state spaceΓ = {x1, ..., xN}. A natural way

to achieve this approximation is to projectX on the grid

Γ following the closest neighbour rule. This technique has

been recently used to solve (via Monte carlo simulation)

some high-dimensional problems arising in finance such as

numerical integration [6], pricing of American options on

a multi-dimensional underlying [2], pricing European op-

tions on a multi-dimensional underlying in the Uncertain

Volatility framework, ... . It has been shown in [2] that

in order to obtain relevant results, one has to take a gridΓ

that minimizes theLp-mean error between the continuous

variable and its quantized form. Up to now, this optimiza-

tion problem was achieved using some gradient-based al-

gorithms such as Lloyd’s method I and Stochastic Gradient

Algorithm (SGA) (for further details about these techniques

one can see [7] forp = 2 andX gaussian). In high dimen-

sion (d ≥ 2), the optimization problem has not a unique so-

lution and an optimal quantizer provided by the algorithms

mentioned above is in fact a local minimizer of theLp-mean

error.

In this paper, we suggest to use evolutionary optimiza-

tion in order to obtain a “global” optimalLp-quantizer ofX

. The evolutionary algorithms (EAs) are powerful stochas-

tic zeroth order optimization algorithms based on a crude

imitation of natural Darwinian evolution. Given anobjec-

tive functionto optimize over a search space E, they per-

form a random search in E in the hope to reach the global

optimum. A detailed presentation of EAs is given in section

4.

This paper is organized as follows. Section 2 describes

briefly the quantization of a continuous random variable.

Section 3 presents the stochastic gradient method. In Sec-

tion 4, we show how to deal with the optimization problem

using (EAs). Sections 5 and 6 provide a numerical com-

parison between our method and a the stochastic gradient

method.

2 Optimal Lp-quantization

We consider aµ-distributed random variableX ∈ Lp
R de-

fined on a probability space(Ω,F ,P). TheLp-quantization

(p ≥ 1) consists inLp-approximatingX by a random vector

X̂ taking its values in a finite gridΓ = {x1, ..., xN} where

∀i ∈< 1, N >, xi ∈ R. From signal processing we can

prove that the best way for approximating or “quantizing”

a random variableX using a gridΓ is to projectX on Γ

following the nearest neighbour rule. This leads to a Borel

partition{Cj(Γ)}1≤j≤N of R called Voronöı tesselation of

X.

The Voronoi quantizer ofX is then given by:

bX =
NX

i=1

xi1Ci(Γ) (X)

We say thatΓ = (x1, ..., xN ) is an optimalLP -quantizer
of X, if Γ solves the problem of minimizing theLP -mean



of the quantization error:

‖X − bX‖p =

 
NX

i=1

E(1Ci(Γ)(X)‖X− xi‖p)

! 1
p

Instead of minimizing theLp-mean error, we usu-

ally work for simplicity with the quantityDX,p
N (Γ) =

E(min1≤j≤N ‖X−xj‖p) , called theLP -distorsion. The

function Γ → DX,p
N (Γ) is continuous and reaches a min-

imum denotedDX,p
N at someN -tuple havingN pairwise

distinct components Furthermore, it is easy to establish that

this minimumDX,p
N decreases to0 as the sizeN of the op-

timal quantizer goes to infinity (see e.g. [4, 6] for a proof of

these properties).

3 Stochastic Gradient Algorithm

Stochastic gradient methods are based on the integral repre-

sentation of the criterion to be optimized, which is the case

with distortion : Γ → DX,p
N (Γ). Let (wt)t∈N∗ be a se-

quence of iidµ-distributed random variables and(γt)t∈N∗

a sequence of positive steps satisfying
∑

t γt = +∞ and∑
t γ2

t < +∞. Then starting from an initialN -tuple Γ0

with N pairwise distinct components, set:

Γt+1 = Γt − (γt+1/p)Hp(Γt, wt+1) (3.1)

Formula (3.1) can be developed as follows if one setsΓt :=(
x1,t, ..., xN,t

)
:

Let i (t + 1) ∈ arg mini

∣∣xi,t − wt+1
∣∣. Then, we have:

8
<
:

xi(t+1),t+1 = xi(t+1),t − γt+1

��xi(t+1),t − wt+1
��p−1 xi(t+1),t−wt+1

|xi(t+1),t−wt+1|
xi,t+1 = xi,t, i 6= i (t + 1)

The choice of the descent stepγt is crucial, for further

details about this issue one can see [7, 4] for the optimal

quadratic quantization of a gaussian law.

4 Optimal Lp-Quantization with the EA

As described in section 3, the SGA works with a single so-

lution and gives a local optimum close to the starting point.

The aim of using EAs is to maintain a set of solutions in-

stead of one, that are manipulated competitively by some

variation operators, in order to perform a parallel search

over the search space E.

4.1 Evolutionary algorithms: a brief overview

Let Πt = (Γt
1, Γ

t
2, · · · , Γt

M ) denote the population at

the generationt, whereM ∈ N is the population size

and Γt
i is a potential solution to the problem. The

first populationΠ0 is initialized randomly on the search

space E. Then, the population evolves by cycles of mu-

tation/recombination/selection which tends to decrease the

fitness. The following procedure describes a simple struc-

ture of an evolutionary algorithm [8].

Structure of an Evolutionary Algorithm

t ← 0

initialize populationΠ0 = (Γ0
1, Γ

0
2, · · · , Γ0

M )

evaluate(Π0)

while (not stopping-condition)do

begin
t ← t + 1

selectVt from Πt−1

Wt ← alterVt (mutation+recombination)

evaluateWt

selectΠt from Wt

end

4.2 Evolutionary Algorithms for optimal

Lp-quantization

Recall that to obtain an optimalLp-quantizer of a random

variableX ∈ Lp
R , we should search for a Voronoı̈ tes-

sellation of this variable in(R)N that minimizes theLp-

distortion. The following sub-sections explain how to use

an EA for optimalLp-quantization.

4.2.1 Computation of the objectif function

Let f(Γt
m), m ∈ 〈1,M〉 denote fitness (i.e. objec-

tif function value) of the individualΓt
m. For the opti-

mal quantization, the fitness of a given individualΓt
m =

(x1,t
m , x2,t

m , · · · , xN,t
m ), m ∈ 〈1,M〉 will be considered as

equal to its distortion.

To estimate the distortion by Monte-Carlo simulation,

we consider(X(l))l∈<1,L> a set ofL ∈ N (in practice

L >> N ) iid realizations of the random variableX in

(R)N. From now on, This set is named theReference Sam-

ple. The objectif function to optimize is then given by:

bf(Γt
m) =

1

L

LX

l=1

 
NX

i=1

1Ci(Γ
t
m)(X

(l))‖X(l) − xi,t
m ‖p

!
(4.1)



4.2.2 The evolution scheme

A set of genetic operators define the dynamic evolution

of the population. Two kinds of operators are used: se-

lection operators and variation operators. Selection oper-

ators determine candidates for reproduction and replace-

ment. Variation operators (mutation and crossover) are gen-

erally stochastic operators used to produce new individuals

by combining and perturbing the information contained in

the parents.

Selection

The selection step is performed twice in each generation

for both crossover and new population construction. We

start with the generationΠt−1, we use first selection proce-

dure to choose a set of individualsVt from Πt−1 for repro-

duction. The selection is applied a second time to choose

which individuals fromWt will be part of the new popula-

tion Πt. The second step is also called replacement.

The probabilityps(Γt
m) for an individual Γt

m, m ∈
〈1,M〉 to be selected is given by :ps(Γt

m) = e−f(Γt
m)

PM
i=1 e−f(Γt

i
)

We Notice that this probability of selection is increasing

with the fitness.

Crossover

Let Γk andΓs be two selected grids inVt. A new off-

springΓr is created, with a probabilitypc by merging the

contained information in the parentsΓk andΓs [5] as fol-

lows : Γr = αΓk + (1 − α)Γs whereα is anN -tuple of

[0, 1]d-uniform random variables and the multiplication is

considered component-wise.

Mutation Each elementΓm in Wt has a probabilitypm to

be mutated and gives birth to a new individualΓm′, that will

replaceΓm in Wt: Γ′m = Γm + ε, whereε is aN -tuple of

R independent random Gaussian variables with a mean of

zero and a variable standard deviationβt. The parameterβt

itself is subject to mutation in order to scale the movement

of the grid points on the search space along evolution.

5 Numerical tests for Normal distribution

In this section, we specialize the discussion to the optimal

quadratic quantization of ad-dimensional Gaussian vector.

We compare the grids obtained by the EA to those obtained

by the SGA in terms of final distortion and geometric sym-

metry.

In order to obtain a “good” optimal grid with the SGA,

we use the same sequence(γt)t∈N∗ as in [7,§ 3.2.2] (This

choice is inferred from a work done in this paper on quanti-

zation of[0, 1]d-Uniform law). We also mention the follow-

ing important issue highlighted in [7]. Actually, the simu-

lation of points with too large norms may cause dramatic

effects on the procedure (3.1) when the stepγt is not yet

small enough. In order to avoid this, we will (first) simulate

some spherically truncated Normal variables(wt) (calibrat-

ing the threshold radius so as to keep at least99% of their

mass). This truncation has a stabilizing effect on the proce-

dure. Then, to get a quantization of the original Normal dis-

tribution, instead of doing like in [7], i.e. completing the op-

timization by processing a Lloyd’s method I with non trun-

cated Normally distributed random numbers, we continue

to use the procedure (3.1) with non truncated Normal vari-

ables(wt) (since, for large values oft, γt becomes small).

One verifies that, when the number of points is large, this

only affects the location of the peripheral points. On the

other hand, as expected, it slightly increases the distortion

(but it produces more accurate results for numerical integra-

tion of course).

For stability reasons, we also do a similar work when

using the EA. Actually we will start first by using a trun-

cated Reference Sample, in order to estimate the fitness

(i.e. the distortion) of a given individual (i.e. grid) (The

truncated Reference Sample, is obtained from the (non-

truncated) Reference Sample, by keeping only the points

of in a hyper-sphere of which the radius is calibrated so as

to keep at least99% of the mass). Then, to get a quan-

tization of the original Normal distribution, we can either

use the procedure (3.1) with non truncated Normal vari-

ables(wt) (starting with a smallγ0) or use an EA with a

non-truncated Reference Sample (We use the initial Refer-

ence sample from which the truncated Reference Sample

was extracted) and with an initial population equal to the

final population of the previous EA.

Before going further, let’s introduce on some notations:

SGA (Tr) Using SGA with truncated Normal variables
�
wt
�
.

SGA (n-Tr) Using SGA with non-truncated Normal variables
�
wt
�
.

EA (Tr) Using EA with truncated Reference Sample.

EA (n-Tr) Using EA with non-truncated Reference Sample.

We then, introduce two procedures that we will use to



obtain an optimal quantizer of the Normal distribution.

The first procedure uses the gradient optimization method

(SGA). It starts with a random grid and arrives at grid(1)

by applying SGA with truncation (SGA(Tr)). Then, using

Grid(1) as a starting point, the optimization procedure con-

tinue without truncation (SGA(n-Tr)) and arrives at Grid (1

bis).

Similarly, Procedure 2 involves using EA(Tr) (EA with

truncation), starting with a random population and arriving

at population (2) with the best element in Grid(2). Then,

using population (2) as a starting population, the evolution

continue without truncation (EA(n-Tr)) and arrive at popu-

lation (2 bis) with the best element in Grid (2bis).

We give below different detailed results for dimensions 2

and 3. We also give some other results showing the be-

havior of the difference between the minimal distortions

given by the two algorithms when the dimensiond increases

(from 1 to 7). The values of EA parameters described in

section 4 are given in the following table. These parame-

ters were found by preliminary numerical experimentations.
EA parameter settings

Population size (M ) 70

Crossover Probability (pc) 0.6

Mutation Probability (pm) 0.9

Initial standard deviation for mutation (β0) 0.03

Maximum Number of Generations (tmax) 800 for EA (Tr)

1200 for EA (n-Tr)

SGA parameter settings

Descent-step (γt) As in [7]

Maximum Number of iterations (tmax) 4 000 000 for SGA (Tr)

6 000 000 for SGA (n-Tr)

For the EA (Tr) (or SGA (Tr)) step, we use a truncated

Reference Sample containing 50 000 realizations of thed-

dimensional random variable under study. of which the

norms are smaller that 3 (we consider 3 as radius thresh-

old).

Dimension 2 and 3

We see in Figure 1 below, that the use of a non-truncated

step (i.e EA (n-Tr) or SGA (n-Tr)) after a truncated one,

affects essentially the peripheral points of the grid:

The distortions of the different obtained optimal grids are

summarized in the table 1.

Distortion as a function of dimension

In this paragraph, we are interested in the impact of the di-

mension on the distortion level obtained with EA and SGA

−3 0 3 
−3

0

3
Grid(1)
Grid(1bis)

−3 0 3
−3

0

3
Grid(2)
Grid(2bis)

Superposition Grid (1) vs Grid (1bis) Superposition Grid (2) vs Grid (2bis)

Figure 1: Superposition of the grids obtained with procedure 1

(left) and procedure 2 (right) with N=100 and d=2.

Dimension 2 Dimension 3

Grid (1) DTr
final = 0.03297 DTr

final = 0.20439

Grid(1 bis) Dn−Tr
final = 0.03987 Dn−Tr

final = 0.24488

Grid (2) DTr
final = 0.03285 DTr

final = 0.19435

Grid (2 bis) Dn−Tr
final = 0.03855 Dn−Tr

final = 0.22987

Table 1: Distortions of the optimal grids with d=2 and d=3

approaches. Experiments done with N=14 show that the

spread between the distortions obtained by the two types

of algorithms increases with dimension. This spread be-

comes significant when the dimension exceeds 3. The dis-

tortion obtained by the EA is always smaller than the one

obtained by the SGA. The figure 2 gives the relative spread

between the distortions of Grid (1 bis) and Grid (2 bis) de-

fined by :(Distortion of Grid (1 bis) - Distortion of Grid (2

bis))/Distortion of Grid (2 bis)as a function of dimension.
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Figure 2: Relative spread as function of dimension for

N=14.

So, when dealing with some high-dimensional numerical

probabilistic problems, one can expect that using EAs in-

stead of gradient based algorithms in order to compute the

optimal quantizers will give more accurate results.



6 Application to the pricing of an American

option

In this section, we focus on the problem of approximating

the value of an optimal stopping problem by thequantiza-

tion tree methodintroduced by Bally, Pag̀es and Printemps

[1].

The quantization tree method consists in approximating

a continuous-time process with values in a continuous state

space by a discrete-time process with a finite state space. At

each time step the finite state space is obtained by optimal

quantization. The transition matrix of the approximating

discrete-time process is usually obtained by classical Monte

Carlo technique. The main objective of this section is to use

an EA instead of a SGA for generating the optimal grids,

and to analyze the performance of this method.

Numerical Results

Wee consider a bermudan option on the geometric mean

of d assets :f(s) :=

[
K −

(
d∏

i=1

si

) 1
d

]+

. In the multi-

dimensional Black and Scholes framework, the geometric

mean ofd non-dividend lognormal processes is equivalent

to a particular lognormal process with a dividend yield.

The following are the parameters used for the simulations :
instantanious interest rate r 0.06

volatility σi = 0.3 andρij = 0.5

maturity T 1

initial values Si
0 = 36

strikeK 40

time step 1/5

In order to price this bermudan option by quanti-

zation tree method, one need a set of gridsS =

{Γ1,Γ2, · · · , ΓM}, where each grid is associated to a time

stepTi = iT
m , (i = 1, · · · ,m). We consider 3 kinds sets

of grid’s setSj , j = 1, 2, 3: The grids of the first (resp.

second) set are obtained via Stochastic Gradient Algorithm

(resp. Evolutionary Algorithm). Whereas, each grid of the

third setSj is a random grid sampled with respect to the

underlying dynamics (no optimization).

We compare the prices obtained using quantization tree

method with each one of these sets of grids to those ob-

tained by the finite difference method.
We see that, the prices obtained with a set of optimal

grids (i.e. computed with an EA) are closer to the true prices

Grids Mean Std. dev. Std. dev.
True price

Dimension 1 (True price = 5.6571)

Random 5.6540 0.0020 0.035%

SGA 5.6606 0.0017 0.003%

EA 5.6604 0.0017 0.003%

Dimension 2 (True price = 5.2642)

Random 5.2550 0.0021 0.040%

SGA 5.2674 0.0020 0.038%

EA 5.2639 0.0026 0.049%

Dimension 3 (True price = 5.1192 )

Random 5.0901 0.0020 0.039%

SGA 5.0887 0.0019 0.037%

EA 5.1102 0.0026 0.051

Dimension 4 (True price = 5.0432)

Random 5.0079 0.0039 0.078%

SGA 5.0033 0.0028 0.056%

EA 5.0407 0.0025 0.050%

Table 2: Bermuda option prices computed with random and

optimized grids

(Especially for dimensions 3 and 4) than the prices obtained

with a set of local optimal grids (i.e. computed with an

SGA) or random grids. We also remark that the difference

between the EA-based prices and the other ones increases

as the dimension rises.

Bibliography

[1] V. Bally and G. Pag̀es (2005). A quantization algorithm for solv-

ing discrete time multi-dimensional optimal stopping problems,

Bernoulli. 11(5), 893-932.

[2] V. Bally, G. Pag̀es and J. Printems (2005). A quantization method

for pricing and hedging multi-dimensional American style options,

Mathematical Finance. 15(1), 119-168.

[3] J. Bucklew and G. Wise (1997). Multidimensional Asymptotic

Quantization Theory withrth Power distorsion Measures,IEEE on

information Theory: Special issue on quantization28, no 2, 239-277.

[4] S. Graf and H.Luschgy. Foundations of quantization for probability

distributions,Lecture Notes in Mathematics no1730, Springer, 230.

[5] Z Michalewicz (1996). Genetic Algorithms+Data

Structures=Evolution Programs, Springer Verlag.

[6] G. Pag̀es (1997). A space vector quantization method for numerical

integration,J. of Applied and Computational Mathematics89, 1-38.

[7] G. Pag̀es and J. Printems (2003). Optimal quadratic quantization for

numerics: the Gaussian case, Monte Carlo Methods & Applications.

9(2), 135-166.

[8] M. Schoenauer and Z. Michalewicz (1997).Evolutionary Computa-

tion: An Introduction, Control and Cybernetics, 287-299, Springe.


