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Summary. We quantize a multidimensional SDE (in the Stratonovich sense)
by solving the related system of ODE’s in which the d-dimensional Brownian
motion has been replaced by the components of functional stationary quantiz-
ers. We make a connection with rough path theory to show that the solutions
of the quantized solutions of the ODE converge toward the solution of the
SDE. On our way to this result we provide convergence rates of optimal
quantizations toward the Brownian motion for 1

q
-Hölder distance, q > 2, in

Lp(P).
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1 Introduction

Quantization is a way to discretize the path space of a random phe-
nomenon: a random vector in finite dimension, a stochastic process
in infinite dimension. Optimal Vector Quantization theory (finite-
dimensional) random vectors finds its origin in the early 1950’s in order
to discretize some emitted signal (see [10]). It was further developed by
specialists in Signal Processing and later in Information Theory. The
infinite dimensional case started to be extensively investigated in the
early 2000’s by several authors (see e.g. [18], [5], [19], [20], [19], [4], [12],
etc).
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In [20], the functional quantization of a class of Brownian diffusions
has been investigated from a constructive point of view. The main fea-
ture of this class of diffusions was that the diffusion coefficient was
the inverse of the gradient of a diffeomorphism (both coefficients being
smooth). This class contains most (non degenerate) scalar diffusions.
Starting from a sequence of rate optimal quantizers, some sequences of
quantizers of the Brownian diffusion are produced as solutions of (non
coupled) ODE’s. This approach relied on the Lamperti transform and
was closely related to the Doss-Sussman representation formula of the
flow of a diffusion as a functional of the Brownian motion. In many sit-
uations these quantizers are rate optimal (or almost rate optimal) i.e.

that they quantize the diffusion at the same rate O((log N)−
1
2 ) as the

Brownian motion itself where N denotes the generic size of the quan-
tizer. In a companion paper (see [27]), some cubature formulas based
on some of these quantizers were implemented, namely those obtained
from some optimal product quantizers based on the Karhunen-Loève
expansion of the Brownian motion, to price some Asian options in a
Heston stochastic volatility model. Rather unexpectedly in view of the
theoretical rate of convergence, the numerical experiments provided
quite good numerical results for some “small” sizes of quantizers. Note
however that these numerical implementations included some further
speeding up procedures combining the stationarity of the quantizers

and the Romberg extrapolation leading to a O((log N)−
3
2 ) rate. Al-

though this result relies on some still pending conjectures about the
asymptotics of bilinear functionals of the quantizers, it strongly pleads
in favour of the construction of such stationary (rate optimal) quantiz-
ers, at least when one has in mind possible numerical applications.

Recently a sharp quantization rate (i.e. including an explicit con-
stant) has been established for a class of not too degenerate 1-dimensio-
nal Brownian diffusions. However the approach is not constructive

(see [4]). On the other hand, the standard rate O((log N)−
1
2 ) has been

extended in [22] to general d-dimensional Itô processes, so including
d-dimensional Brownian diffusions regardless of their ellipticity prop-
erties. This latter approach, based an expansion in the Haar basis, is
constructive, but the resulting quantizers are no longer stationary.

Our aim in this paper is to extend the constructive natural approach
initiated in [20] to general d-dimensional diffusions in order to produce
some rate optimal stationary quantizers of these processes. To this end,
we will call upon some seminal results from rough path theory, namely
the continuity of the Itô map, to replace the “Doss-Sussman setting”.
In fact we will show that if one replaces in an SDE (written in the
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Stratonovich sense) the Brownian motion by some elementary quantiz-
ers, the solutions of the resulting ODE’s make up some rough paths
which converge (in p-variation and in the Hölder metric) to the solution
of the SDE. We use her the rough path theory as a tool and we do not
aim at providing new insights on this theory. We can only mention that
these rate optimal stationary quantizers can be seen as a new example
of rough paths, somewhat less “stuck” to a true path of the underlying
process.

This work is devoted to Brownian diffusions which is naturally the
prominent example in view of applications, but it seems clear that
this could be extended to SDE driven e.g. by fractional Brownian
motions (however our approach requires to have an explicit form for
the Karhunen-Loève basis as far as numerical implementation is con-
cerned).

Now let us be more precise. We consider a diffusion process

dXt = b(t,Xt) dt + σ(t,Xt) ◦ dWt, X0 = x∈ Rd, t ∈ [0, T ],

in the Stratonovich sense where b : [0, T ] × Rd → Rd and σ :
[0, T ] × Rd → M(d × d) are continuously differentiable with linear
growth (uniformly with respect to t) and W = (Wt)t∈[0,T ] is a d-
dimensional Brownian motion defined on a filtered probability space
(Ω,A, P). (The fact that the state space and W have the same dimen-
sion is in no case a restriction since our result has nothing to do with
ellipticity).

Such an SDE admits a unique strong solution denoted Xx =
(Xx

t )t∈[0,T ] (the dependency in x will be dropped from now to al-

leviate notations). The Rd-valued process X is pathwise continuous
and supt∈[0,T ] |Xt| ∈ Lr(P), r > 0 (where | . | denotes the canon-

ical Euclidean norm on Rd). In particular X is bi-measurable and
can be seen as an Lr(P)-Radon random variable taking values in
the Banach spaces (Lp

T, Rd , | . |Lp
T
) where Lp

T, Rd = Lp
Rd([0, T ], dt) and

|g|Lp
T

=
(∫ T

0 |g(t)|pdt
) 1

p
denotes the usual Lp-norm when p∈ [1,∞).

For every integer N ≥ 1, we can investigate for X the level N
(Lr(P), Lp

T
)-quantization problem for this process X, namely solving

the minimization of the Lr(P)-mean Lp
T,Rd-quantization error

eN,r(X,Lp) := min
{
eN,r(α,X,Lp), α ⊂ Lp

T,Rd, card α ≤ N
}

(1)

where eN,r(α,X,Lp) denotes the Lr-mean quantization error induced
by α, namely
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eN,r(α,X,Lp) :=
(

E min
a∈α

|X − a|rp
) 1

r
=

∥∥∥∥min
a∈α

|X − a|Lp

T,Rd

∥∥∥∥
Lr(P)

.

The use of “min” in (1) is justified by the existence of an optimal
quantizer solution to that problem as shown in [3, 13] in this infinite
dimensional setting. The Voronoi diagram associated to a quantizer α
is a Borel partition (Ca(α))a∈α such that

Ca(α) ⊂
{

x∈ Lp
T,Rd | |x − a|Lp

T,Rd
≤ min

b∈α
|x − b|Lp

T,Rd

}

and a functional quantization of X by α is defined by the nearest neigh-
bour projection of X onto α related to the Voronoi diagram

X̂α :=
∑

a∈α

a1{X∈Ca(α)}.

In finite dimension (when considering Rd-valued random vectors in-
stead of Lp

T,Rd-valued processes) the answer is provided by the so-called

Zador Theorem which says (see [10]) that if E|X|r+δ < +∞ for some
δ > 0 and if g denotes the absolutely continuous part of its distribution
then

N
1
d eN,r(X, Rd) → J̃r,d‖g‖

1
r

d
d+r

as N → ∞ (2)

where J̃r,d is finite positive real constant obtained as the limit of the

normalized quantization error when X
d
= U([0, 1]). This constant is

unknown except when d = 1 or d = 2.
A non-asymptotic version of Zador’s Theorem can be found e.g.

in [22]: for every r, δ > 0 there exists a universal constant Cr,δ > 0 and
an integer Nr,δ ≥ such that, for every random vector Ω,A, P) → Rd,

∀N ≥ Nr,δ, eN,r(X, Rd) ≤ Cr,δ‖X‖r+δN
− 1

d .

The asymptotic behaviour of the Ls(P )-quantization error of sequences
of Lr-optimal quantizers of a random vector X when s > r has been
extensively investigated in [13] and will be one crucial tool to establish
our mains results.

In infinite dimension, the case of Gaussian processes was the first to
have been extensively investigated, first in the purely quadratic case
(r = p = 2): sharp rates have been established for a wide family
of Gaussian processes including the Brownian motion, the fractional
Brownian motions (see [18, 19]). For these two processes sharp rates
are also known for p∈ [1,∞] and r∈ (0,∞) (see [4]). More recently, a
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connection between mean regularity of t 7→ Xt (from [0, T ] into Lr(P))
and the quantization rate has been established (see [22]): if the above
mapping is µ-Hölder for an index µ∈ (0, 1], then

eN,r(X,Lp) = O((log N)−µ), p∈ (0, r).

Based on this result, some universal quantization rates have been ob-
tained for general Lévy processes with or without Brownian compo-
nent some of them turning out to be optimal, once compared with the
lower bound estimates derived from small deviation theory (see e.g. [11]
or [5]). One important feature of interest of the purely quadratic case is
that it is possible to construct from the Karhunen-Loève expansion of
the process two families of rate optimal (stationary) quantizers, relying
on

– sequences (α(N,prod))N≥1 of optimal product quantizers which are

rate optimal i.e. such that eN,r(α
(N),X,L2) = O(eN,2(X,L2)) (al-

though not with a sharp optimal rate).

– sequences of true optimal quantizers (or at least some good numer-
ical approximations) (α(N,∗))N≥1 i.e. such that eN,r(α

(N,∗),X,L2) =
eN,2(X,L2).

We refer to Section 2.1 below for further insight on these objects
(both being available on the website www.quantize.math-fi.com).

The main objective of this paper is the following: let (αN )N≥1

denote a sequence of rate optimal stationary (see (8) further on)
quadratic quantizers of a d′-dimensional standard Brownian motion
W = (W 1, . . . ,W d). Define the sequence xN = (xN

n )n=1,...,N , N ≥ 1, of
solutions of the ODE’s

xN
n (t) = x +

∫ t

0
b(xN

n (s))ds +

∫ t

0
σ(xN

n (s))dαN
n (s), n = 1, . . . , N.

Then, the finitely valued-process defined by

X̃N =

N∑

n=1

xN
n 1{W∈Cn(α(N))}

converges toward the diffusion X on [0, T ] (at least in probability) as
N → ∞. This convergence will hold with respect to distance introduced
in the rough path theory (see [25, 14, 6, 9, 26]) which always implies
convergence with respect to the sup norm. The reason is that our result
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will appear as an application of (variants of the) the celebrated Uni-
versal Limit Theorem originally established by T. Lyons in [25]. The
distances of interest in rough path theory are related to the 1

q -Hölder
semi-norm or the q-variation semi-norm both when q > 2 defined for
every x∈ C([0, T ], Rd) by

‖x‖q,Hol = T
1
p sup

0≤s<t≤T

|x(t) − x(s)|
|t − s|

1
q

≤ +∞,

and

Varq,[0,T ](x) :=sup
{( ∑

0≤ℓ≤k−1

|x(tℓ+1)−x(tℓ)|q
)1

q

, 0 ≤ t0 ≤ t1 ≤ · · · ≤ tk ≤ T, k ≥ 1
}
≤ +∞

respectively. Note that

‖x − x(0)‖sup ≤ Varp,[0,T ](x) ≤ ‖x‖p,Hol.

From a technical viewpoint we aim at applying some continuity
results established on the Itô map by several authors (see e.g. [14, 25,
6, 16]) that is the continuity of a solution x of the ODE (in a rough
path sense)

dxt = f(xt)dyt, x0 = x(0),

as a functional of y. However, the above (semi-)norms associated to a
function x are not sufficient and the natural space to define such rough
ODE is not the “naive” space of paths but a space of enhanced paths,
which involves in the case of a multi-dimensional Brownian motion
the mutual Lévy areas of its components. Convergence in this space
is defined by considering appropriate 1

q -Hölder and p-variation semi-

norms to both the d-dimensional path and the related (pseudo-)Lévy
areas (wit different values of q and p, see Section 3). Our application to
quantized SDE’s will make extensively use the fact that our functional
quantizations of the Brownian motion W will all satisfy a stationary
assumption i.e.

Ŵ = E(W |σ(Ŵ ))

so that we will extend the Kolmogorov criterion satisfied by W to its

functional quantizers Ŵ for free. This approach is rather straightfor-
ward and its field of application seems more general than our func-
tional quantization purpose: thus the piecewise affine interpolations of
the Brownian motion obviously satisfy such a property (see Appendix).
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The paper is organized as follows. In Section 2 we provide some
short background on functional quantization as well as preliminary el-
ementary results on stochastic integration with respect to a stationary
functional quantizer of a d-dimensional standard Brownian motion. In
Section 3, we define a quantized approximation scheme of an SDE (in
the Stratonovich sense) driven by a standard Brownian motion by its
functionally quantized counterpart which turns out to be a system of
(non-coupled) ODE’s. To this end we recall some basic facts on rough
path theory, in particular the notion of convergence we need to define on
the so-called multiplicative functionals involved in the continuity of the
Itô map which, when dealing with Brownian motion amounts, to some
convergence in Hölder semi-norm of the naive path as well as, roughly
speaking, the running (pseudo-)Lévy areas of its components. In Sec-
tion 4 and 5, we establish successively the convergence in the Hölder

distance of sequences of optimal stationary quantizations Ŵ of the
Brownian motion toward W : Section 4 is devoted to the convergence
of the “regular” paths whereas Section 5 deals with the convergence
of the running (pseudo-)Lévy areas (and to the global convergence of
the couple). In both cases we provide some convergence rate in the
(log N)−a, a ∈ (0, 1

2 ) scale which is the natural scale for such conver-
gences since optimal functional quantizations of the Brownian motion

are known to converge at a (log N)−
1
2 -rate for most usual norms (like

quadratic pathwise norm on L2([0, T ], dt)).

Notations: • For every d ≥ 1, one denotes ξ = (ξ1, . . . , ξd) a row
vector of Rd. M(d × d) will denote the set of square matrices with d
lines.
• | . | denotes the canonical Euclidean norm on Rd.
• We denote (FX

t )t≥0 the augmented natural filtration of a process
X = (Xt)t≥0 (so that it satisfies the usual conditions).
• For a bounded function f : [0, T ] → Rd, ‖ f ‖sup := supt∈[0,T ] |f(t)|. If

f is a Borel function and p∈ [1,+∞), ‖f‖Lp

T,Rd
:=
(∫ T

0 |f(t)|pdt
) 1

p
.

• For an Rd-valued bi-measurable process X and p∈ [1,+∞), we denote

‖X‖p := ‖ |X|Lp

T,Rd
‖p =

(
E
∫ T
0 |Xt|pdt

)1/p
.

• We denote tnk = kT
2n , k = 0, . . . , 2n, the uniform mesh of the interval

[0, T ], T > 0 and In
k = [tnk , tnk+1], k = 0, . . . , 2n − 1.

• ⌊x⌋ denotes the lower integral part of x∈ R.
• Let (an)n≥0 and (bn)n≥0 be two sequences of real numbers: an ∼ bn

if an = bn + o(bn) and an ≍ bn if an = O(bn) and bn = O(an).
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2 Background and preliminary results on functional

quantization

2.1 Some background on functional quantization

Functional quantization of stochastic processes can be seen as a dis-
cretization of the path-space of a process and the approximation (or
coding) of a process by finitely many deterministic functions from its
path-space. In a Hilbert space setting this reads as follows.

Let (H, 〈·, ·〉) be a separable Hilbert space with norm | · | and let
X : (Ω,A, P) → H be a random vector taking its values in H with
distribution PX . Assume the integrability condition

E |X|2 < +∞. (3)

For N ≥ 1, the L2-optimal N -quantization problem for X consists in
minimizing

∥∥∥min
a∈α

|X − a|
∥∥∥

L2(P)
=
(
E min

a∈α
|X − a|2

)1/2

over all subsets α ⊂ H with card(α) ≤ N . Such a set α is called N -
codebook or N -quantizer. The minimal quantization error of X at level
N is then defined by

e
N

(X,H) := inf
{

(E min
a∈α

|X − a|2)1/2 : α ⊂ H, card(α) ≤ N
}

. (4)

For a given N -quantizer α one defines an associated nearest neighbour
projection

πα :=
∑

a∈α

a1Ca(α)

and the induced α-(Voronoi)quantization of X by setting

X̂α := πα(X), (5)

where {Ca(α) : a ∈ α} is a Voronoi partition induced by α, that is a
Borel partition of H satisfying

Ca(α) ⊂ {x ∈ H : |x − a| = min
b∈α

|x − b|} (6)

for every a ∈ α. Then one easily checks that, for any random vector
X

′

: Ω → α ⊂ H,

E |X − X
′ |2 ≥ E |X − X̂α|2 = E min

a∈α
|X − a|2



Convergence of multi-dimensional quantized SDE’s 9

so that finally

en(X,H)=inf

{∥∥∥|X − q(X)|
∥∥∥

L2(P)
, q : H

Borel→ H, card(q(H)) ≤ N

}

=inf

{∥∥∥|X − Y |
∥∥∥

L2(P)
, Y : (Ω,A)

r.v.→ H, card(Y (Ω)) ≤ N

}
.(7)

A typical setting for functional quantization is H =L2
T

:=L2
R
([0, 1],dt)

(equipped with 〈f, g〉2 :=
∫ T
0 fg(t)dt and |f |L2

T
:=
√
〈f, f〉2). Thus any

(bi-measurable, real-valued) process X = (Xt)t∈[0,T ] defined on a prob-
ability space (Ω,A, P) such that

∫ T

0
E(X2

t )dt < +∞

is a random variable X : (Ω,A, P) → L2
T
. But this Hilbert setting is not

the only possible one for functional quantization (see e.g. [21], [12], [5],
etc) since natural Banach spaces like Lp

R
([0, T ], dt) or C([0, T ], R) are

natural path-spaces.
In the purely Hilbert setting the existence of (at least) one optimal

N -quantizer for every integer N ≥ 1 is established so that the infimum
in (4) holds as a minimum. A typical feature of this quadratic Hilbert
framework is the so-called stationarity (or self-consistency) property
satisfied by such an optimal N -quantizer α(N,∗):

X̂α(N,∗)
= E(X | X̂α(N,∗)

). (8)

This property, known as stationarity, will be used extensively through-
out the paper.

This existence property holds true in any reflexive Banach space
and L1 path spaces (see [12] for details).

2.2 Constructive aspects of functional quantization of the
Brownian motion

Karhunen-Loève basis (d = 1)

First we consider a scalar Brownian motion (Wt)t∈[0,T ] on a probability
space (Ω,A, P). The two main classes of rate optimal quantizers of
the Brownian motion are the product optimal quantizers and the true
optimal quantizers. Both are based on the Karhunen-Loève expansion
of the Brownian motion given by
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Wt =
∑

k≥1

√
λk ξk eW

k (t) (9)

where, for every k ≥ 1,

λk =

(
T

π(k − 1/2)

)2

and eW
k (t) =

√
2

T
sin

(
t√
λk

)
(10)

and

ξk =
(W | eW

k )2√
λk

=

√
2

T

∫ T

0
Wt sin(t/

√
λk)

dt√
λk

.

The sequence (eW
k )k≥1 is an orthonormal basis of L2

T
. The system

(λk, e
W
k )k≥1 can be characterized as the eigensystem of the symmetric

positive trace class covariance operator of f 7→ (t 7→
∫ T
0 (s∧t) f(s)ds) ≡

(t 7→ E(<f |W >2 Wt). In particular this implies that the Gaussian se-
quence (ξk)k≥1 is pairwise uncorrelated hence i.i.d., N (0; 1)-distributed.
The Karhunen-Loève expansion of W plays the role of PCA of the
process: it is the fastest way to exhaust the variance of W among all
expansions on an orthonormal basis.

The convergence of the series in the right hand side of (9) holds
in L2

T
for every ω ∈ Ω and P(dω)-a.s. for every t ∈ [0, T ]. In fact

this convergence also holds in L2(P) and P(dω)-a.s. for the sup norm
over [0, T ]. The first convergence follows from Theorem 3(a) further
on applied with X = W and GN = σ(ξ1, . . . , ξN ) and the second one
follows e.g. from [21] P(dω)-a.s.. In particular the convergence holds
in L2(dP ⊗ dt) or equivalently in L2

L2
T

(P). Note that this basis has

already been used in the framework of rough path theory for Gaussian
processes, see e.g. [2, 7, 8].

Optimal product quantization (d ≥ 1)

� The one-dimensional case d = 1. The previous expansion of the
Brownian motion suggests to define a product quantization of W at
level N by

Ŵ
(N1,...,N

L
)

t :=

√
2

T

L∑

k=1

√
λk ξ̂Nk

k sin

(
t√
λk

)
(11)

where N1, . . . , NL are non zero integers satisfying N1 · · ·NL ≤ N and

ξ̂N1
1 , . . . , ξ̂

N
L

L are optimal quadratic quantizations of ξ1, . . . , ξL . The re-
sulting (squared) quadratic quantization error reads
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‖W − Ŵ (N1,...,N
L

)‖2
2

=
∑

k≥1

λk

N2
k

. (12)

An optimal product N -quantization Ŵ N,prod is obtained as a solution
to the following integral bit allocation optimization problem for the
sequence (Nk)k≥1:

min
{
‖W−Ŵ (N1,...,N

L
)‖2 , N1, . . . , NL ≥ 1, N1· · ·NL ≤ N, L≥1

}
(13)

(see [18] for further details and [27] for the numerical aspects). It is
established in [18] (as a special case of a more general result on Gaussian
processes) that

1

T
‖W − Ŵ N,prod‖2 ≍ (log N)−

1
2 (14)

Furthermore, the critical dimension L = LW (N) satisfies LW (N) ∼
log N . Numerical experiments carried out in [27] show that

1

T
‖W − Ŵ N,prod‖2 ≈ c

W
(log N)−

1
2

with cW ≈ 0.5 (at least up to N ≤ 10000).
It is possible to get a closed form for the underlying optimal product

quantizers αN . First, note that the normal distribution on the real line
being log-concave, there is exactly one stationary quadratic quantizer
of full size M for every M ≥ 1 (hence it is the optimal one). So, let
N ≥ 1 and let (Nk)k≥1 denote its optimal integral bit allocation for

the Brownian motion W . For every Nk ≥ 1, we denote by β(Nk) :=

{β(Nk)
ik

, 1 ≤ ik ≤ Nk} the unique optimal quantizer of the normal
distribution: thus α(0) = {0} by symmetry of the normal distribution.
Then, the optimal quadratic product N -quantizer αN,prod (of “true
size” N1×· · ·×NLW (N) ≤ N) can be described using a multi-indexation
as follows:

αN,prod
(n1,...,nk,...)(t) =

∑

k≥1

β(Nk)
nk

√
λke

W
k (t), nk∈ {1, . . . , Nk}, k ≥ 1.

These sums are in fact all finite so that all the functions αN,prod
(i1,...,in,...) are

C∞ with finite variation on every interval of R+.
Explicit optimal integral bit allocations as well as optimal quadratic

quantizations (quantizers and their weights) of the scalar normal distri-
bution are available on the website [28]. Note for practical applications
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that this optimal product quantization is based on 1-dimensional quan-
tizations of small size of the scalar normal distribution N (0; 1). This
kind of functional quantization has been applied in [27] to price Asian
options in a Heston stochastic volatility model.

� The d-dimensional case. Assume now W = (W 1, . . . ,W d) is a d-
dimensional Brownian motion. Its optimal product quantization at level

N ≥ 1 will be defined as the optimal product quantization at level ⌊N 1
d ⌋

of each of its d components.

� Additional results on optimal vector quantization of the normal distri-
bution on Rd. We will extensively make use of the distortion mismatch
result established in [13] that we recall here only in the d-dimensional
Gaussian case. Let Z be an N (0; Id) random vector and let αN be an
optimal quadratic quantizer at level N of Z (hence of size N). Then

(i) ∀ p∈ (0, 2 + d), ∀N ≥ 1, ‖Z − ẐαN ‖p ≤ CZ,pN
− 1

d , (15)

(ii) ∀ p∈ [2 + d,+∞), ∀ η∈ (0, d + 2),∀N ≥ 1,

‖Z − ẐαN ‖p ≤ CZ,p,ηN
− 2+d−η

dp (16)

where CZ,p and CZ,p,η are two positive real constants.

Optimal quantization (d = 1)

It is established in [18] (Theorem 3.2) that the quadratic optimal quan-
tization of the one-dimensional Brownian motion reads

Ŵ N,opt
t =

√
2

T

dW (N)∑

k=1

√
λk (ζ̂N

dW (N))
k sin

(
t√
λk

)
(17)

where, for every integer d ≥ 1, ζd = Proj⊥Ed
(W )∼N (0;Diag(λ1, . . . , λd))

with Ed := R-span
{
sin
(
./
√

λ1

)
, . . . , sin

(
./
√

λd

)}
and ζ̂N

d is an optimal
quadratic quantization of ζd at level (or of size) N .

If one considers an optimal quadratic N -quantizer βN = {βN
n , n =

1, . . . , N} ⊂ RdW (N) of the distribution N
(
0;Diag(λ1, . . . , λdW (N))

)
(a

priori not unique)

αN,opt
n (t) =

dW (N)∑

k=1

(β(N)
n )k

√
λk eW

k (t), n = 1, . . . , N.
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Once again this defines a C∞ function with finite variation on every
interval of R+.

A sharp rate has been obtained in [19] for the resulting optimal
quantization error

‖W − Ŵ N,opt‖2 ∼ Tcopt
W

(log N)−
1
2 as N → ∞ (18)

where copt
W

=
√

2
π ≈ 0.4502.

The true value of the critical dimension dW (N) is unknown. A con-
jecture supported by numerical evidences is that dW (N) ∼ log N . Re-
cently a first step to this conjecture has been established in [23] by
showing that

lim inf
N

dW (N)

log(N)
≥ 1

2
.

Large scale computations of optimal quadratic quantizers of the
Brownian motion have been carried out (up to N = 10000 and d = 10).
They are available on the website [28].

In the d-dimensional setting, several definitions of an optimal quan-
tization of the Brownian motion W = (W 1, . . . ,W d) can be given. For
our purpose, it is convenient to adopt the following one:

Ŵ N,opt :=
(
Ŵ i

⌊N
1
d ⌋,opt)

1≤i≤d
.

Its property of interest is that this definition preserves the component-
wise independence as well as a stationarity property (see below) since

E
(
W i | Ŵ N,opt

)
= E

(
W i | Ŵ i

⌊N
1
d ⌋,opt)

= Ŵ i
⌊N

1
d ⌋,opt

, i = 1, . . . , d.

Wiener like integral with respect to a stationary functional
quantization (d = 1)

Both types of quantizations defined above share an important property
of quantizers: stationarity.

Definition 1. Let α ⊂ L2
T
, α 6= ∅, be a quantizer. The quantizer α is

stationary for the (one-dimensional) Brownian motion W if there is a

Voronoi quantization Ŵ := Ŵ α induced by α such that

Ŵ = E(W |σ(Ŵ )) a.s. (19)
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where E( . |G) denotes the functional conditional expectation given the

σ-field G on L2
L2

T

(P) (see Appendix) and σ(Ŵ ) is the σ-field spanned

by Ŵ .

Note that if α is stationary for one Brownian motion, so it is for any
Brownian motion since this stationarity property only depends on the
Wiener distribution.

In the case of product quantization Ŵ N,prod, this follows from the
stationarity property of the optimal quadratic quantization of the
marginals ξn (see [18] or [27]). In the case of optimal quadratic quan-

tization Ŵ N,opt this follows from the optimality of the quantization of
ζdW (N) itself.

We will now define a kind of Wiener integral with respect to such a

stationary quantization Ŵ of a one-dimensional W . So we assume that
d = 1 until the end of this Section.

First, we must have in mind that if W is an (Ft)-Brownian mo-
tion where the filtration (Ft)t≥0 satisfies the usual conditions, one
can define the Wiener stochastic integral (on [0, T ]) of any process
ϕ ∈ L2([0, T ] × Ω,B([0, T ]) ⊗ F0, dt ⊗ dP) with respect to W . The
non-trivial case is when FW

t 6= Ft, typically when Ft = FB
T ∨ FW

t ,
t ∈ [0, T ] where B and W are independent. One can see it as a spe-
cial case of Itô stochastic integral or as an extended Wiener integral: if
(ϕ(t, ω))(ω,t)∈Ω×[0,T ] denotes an elementary process of the form

ϕ(t, ω) :=

n∑

k=1

ϕk(ω)1sk<t≤sk+1
, 0 = s0 < s1 < · · · < sn−1 < sn = T

where the random variables ϕi are F0-measurable (hence independent
of W ). Set

IT (ϕ) :=

n∑

k=1

ϕk(Wsk+1
− Wsk

).

Then, I
T

is an isometry from L2
L2

T

(P) into L2(F
T
, P). Furthermore, one

easily checks that

E

(∫ T

0
ϕ(s, .)dWs | FW

T

)
=

∫ T

0
E
(
ϕ(s, .) | FW

T

)
dWs

where FW
T

denotes the augmented filtration of W at time T . We fol-
low the same lines to define the stochastic integral with respect to a
stationary quantizer. Set for the same elementary process ϕ
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ÎT (ϕ) =

n∑

k=1

ξk(Ŵsk+1
− Ŵsk

)

so that

Î
T
(ϕ) =

n∑

k=1

ξi E(Wsk+1
− Wsk

| Ŵ )

=

n∑

k=1

E
(
ξk(Wsk+1

− Wsk
) | F0 ∨ σ(Ŵ )

)

= E

(∫ T

0
ϕ(t, .)dWt | F0 ∨ σ(Ŵ )

)

where we used that the σ-fields σ(Ŵ ) and F0 are independent since Ŵ
is a Borel function of W . As a consequence,

‖Î
T
(ϕ)‖2

2
≤ ‖I

T
(ϕ)‖2

2
= ‖ |ϕ|L2

T
‖2

2
.

Hence, the linear transformation Î
T

extends into a linear continuous
mapping on the whole set L2

L2
T

(F0, P). Furthermore, one checks, first

on elementary processes, then on L2
L2

T

(F0, P) by continuity of the (func-

tional) conditional expectation, that

E
(
I

T
(ϕ) | F0 ∨ σ(Ŵ )

)
= Î

T
(ϕ).

We will denote from now on Î
T
(ϕ)(ω) as an integral, namely

Î
T
(ϕ)(ω) :=

∫ T

0
ϕ(t, ω)dŴt(ω).

Now set as usual, for every t∈ [0, T ],

∫ t

0
ϕ(s, ω)dŴs(ω) :=

∫ T

0
1[0,t](s)ϕ(s, ω)dŴs(ω).

One checks using Jensen and Doob Inequality that,

E sup
t∈[0,T ]

∣∣∣∣
∫ t

0
ϕ(s, .)dŴs

∣∣∣∣
2

≤ E sup
t∈[0,T ]

∣∣∣∣
∫ t

0
ϕ(s, .)dWs

∣∣∣∣
2

≤ 4 E

∫ T

0
ϕ2(s, .) ds. (20)
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Furthermore, as soon as the underlying stationary quantizer α (such

that Ŵ = Ŵ α) is made up with pathwise continuous elements, for
every elementary process ϕ, its integral process

∫ t

0
ϕ(s, .) dWs =

n∑

k=1

ξk(Ŵsk+1∧t − Ŵsk∧t)

pathwise continuous as well since Ŵ is α-valued. One classically de-
rives, by combining this result with (20) and the everywhere density of
elementary processes, that, for every ϕ∈ L2

L2
T

(F0, P), the process

(∫ t

0
ϕ(s, .)dŴs

)

t∈[0,T ]

admits a continuous modification.

This is always this modification that will be considered from now on.
As a matter of fact, if ϕn denotes a sequence of elementary processes
in L2

L2
T

(F0, P) converging to ϕ, i.e. satisfying

E

∫ T

0
(ϕ − ϕn)2(s, .)ds −→ 0 as n → ∞.

It follows from (20) that the convergence also holds in L2
L∞

T
(F0, P).

In particular, there is a subsequence that converges P-a.s. for the
‖ . ‖sup which implies the existence of a continuous modification for∫ t

0
ϕ(s, ω)dŴs(ω).

Finally, using the characterization of functional conditional expec-
tation (see Appendix), it follows that

E

(∫ .

0
ϕ(s, .)dŴs , | F0 ∨ σ(Ŵ )

)
=

∫ .

0
ϕ(s, .)dŴs. (21)

Proposition 1. Let W be a (real-valued) Ft-standard Brownian mo-
tion.

(a) For every ϕ∈ L2
L2

T

(F0, P)

∫ t

0
ϕ(s, .)dWs =

√
2

T

∑

k≥1

ξk

∫ t

0
ϕ(s, .) cos(s/

√
λk)ds (22)

where ξk := (W |eW
k )2/

√
λk are independent, N (0; 1)-distributed (see (9)

and (10)) and independent of ϕ.
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(b) Let Ŵ be a stationary quantization of W . For every ϕ∈ L2
L2

T

(F0, P)

∫ t

0
ϕ(s, .)dŴs =

√
2

T

∑

k≥1

(Ŵ |eW
k )2√

λk

∫ t

0
ϕ(s, .) cos(s/

√
λn)ds. (23)

In particular if Ŵ is a product quantization, then

(Ŵ |eW
k )2√

λk
=

̂(W |eW
k )2√

λk
= ξ̂k.

Proof. (a) Set for every ϕ∈ L2
L2

T

(F0, P),

J
T
(ϕ) :=

√
2

T

∑

k≥1

ξk

√
λk

∫ T

0
ϕ(s, .)d sin(s/

√
λk) (24)

=

√
2

T

∑

k≥1

ξk

∫ T

0
ϕ(s, .) cos(s/

√
λk)ds.

This defines clearly an isometry from L2
L2

T

(F0, P) into the Gaussian

space spanned by (ξn)n≥1 since

E(J
T
(ϕ)2) =

2

T

∑

k≥1

E(ξ2
k) E

(∫ T

0
g(s)

1√
λk

cos(s/
√

λk)ds

)2

= E

∫ T

0
g2(t)dt.

The last equality uses that the sequence
(√

2
T cos(π(k − 1

2 )t/T )
)

k≥1

is an orthonormal basis of L2
T
. Finally, note that for every t ∈ [0, T ],

J
T
(1[0,t]) =

√
2
T

∑
k≥1

√
λk ξk sin(t/

√
λk) = Wt. This proves that J

T
=

IT i.e. is but the (extended) Wiener integral with respect to W .

(b) This follows by taking the (functional) conditional expectation
of (22). ♦

Application to multi-dimensional Brownian motions (d ≥ 2)

Now we apply the above result to a componentwise (stationary) func-
tional quantization of a multi-dimensional standard Brownian motion.



18 Gilles PAGÈS and Afef SELLAMI

Proposition 2. Let W =: (W 1, . . . ,W d) denote a d-dimensional stan-

dard Brownian motion and let Ŵ := (Ŵ 1, . . . , Ŵ d) be a pathwise con-
tinuous stationary quantization of W (no optimality is requested here).
Then, P-a.s., for every i 6= j, i, j ∈ {1, . . . , d}, for every s,t ∈ [0, T ],
0 ≤ s ≤ t,

E

(∫ t

s
(W i

u − W i
s)dW j

u |σ(Ŵ )

)
=

∫ t

s
(Ŵ i

s − Ŵ i
s)dŴ j

u .

Proof. All the components of Ŵ being independent, it is clear one can

replace σ(Ŵ ) by σ(Ŵ i, Ŵ j). Then, the stochastic integral
∫ .
0 W i

sdW j
s

coincides with the (extended) Wiener integral defined with respect to

the filtration Gj
i,t := σ(FW i

T
,FW j

t ) (it is clear that W j is a Gj
i,t-standard

Brownian motion still by independence). The result is then a straight-
forward consequence of (21). ♦

Remark. The above result still holds if one considers an additional
“0th” component W 0

t = t to the Brownian motion and to its functional

quantization by setting Ŵ 0
t = t as well.

3 Convergence of quantized SDE’s: a rough path

approach

3.1 From Itô to Stratonovich

An SDE

dXt = b(t,Xt)dt + σ(t,Xt)dWt, X0∈ Lp
Rd(P)

where b : [0, T ] × Rd → Rd and σ : [0, T ] × Rd → M(d × q) are
smooth enough functions (e.g. continuously differentiable with bounded
differentials) and W = (Wt)t∈[0,T ] is a q-dimensional Brownian motion.
First note that without loss of generality one may assume that q =
d by increasing the dimension of W or adding some identically zero
components to X (no ellipticity like assumption is needed here). This
SDE can be written in the Stratonovich sense as follows

dXt = f(Xt) ◦ dWt, X0∈ Lp
Rd(P), (25)

where, for notational convenience W = (W 0,W 1, . . . ,W q) stands for
(t,Wt), Xt = (X0

t ,X1
t , . . . ,Xd

t ) stands for (t,Xt) and f : [0, T ] × Rd →
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M((d + 1) × (d + 1)) (with f0.(t, x) = (1, 0, . . . , 0) as 0th line) is a
differentiable function with bounded differentials.

Following rough paths theory initiated by T. Lyons ([25]) and de-
veloped with many co-authors (see e.g. [26, 14, 16, 26, 9] for an intro-
duction), one can also solve this equation in the sense of rough paths
with finite p-variation, p ≥ 2, since we know (e.g. from the former Kol-
mogorov criterion) that W a.s. does have finite 1

q -Hölder norm, for any
q > 2. Namely this means solving an equation formally reading

dxt = f(xt)dyt, x0∈ Rd. (26)

In this equation y does not represent the path (null at 0) yt = Wt(ω),
t∈ [0, T ] itself but an enhanced path embedded in a larger space, also
called geometric multiplicative functional lying on y with controlled 1

q -

Hölder semi-norm, namely a couple y = ((y1
s,t)0≤s≤t≤T , (y2

s,t)0≤s≤t≤T )

where y1
s,t = yt − ys∈ Rd+1, 0 ≤ s ≤ t ≤ T , can be identified with the

path (yt) and (y2
s,t)0≤s≤t≤T satisfies, y2

s,t ∈ R(d+1)2 for every 0 ≤ s ≤
u ≤ t ≤ T and the following tensor multiplicative property

y2
s,t = y2

s,u + y2
u,t + y1

s,u ⊗ y1
u,t.

Different choices for this functional are possible, leading to different
solutions to the above Equation (26). The choice that makes coincide
a.s. the solution of (25) and the pathwise solutions of (26) is given by

y1
s,t = Wt(ω) − Ws(ω), y2

s,t :=

(∫ t

s
(W i

u − W i
s) ◦ dW j

u

)

i,j=0,...,d

(ω) (27)

so that
y1

s,u ⊗ y1
u,t =

(
y1,i

s,uy
1,j
s,u

)
i,j=0,...,d

.

The term y2
s,t is but the “running” Lévy areas related to the com-

ponents of the Brownian mtion W . The enhanced path of W will be
denoted W (although we will keep the notation y in some proofs for
notational convenience). One defines, for every q ≥ 1, the 1

q -Hölder
distance by setting

ρq(y − x) = ‖y1 − x1‖q,Hol + ‖y2 − x2‖q/2,Hol

where

‖x2‖q/2,Hol := T
2
q sup

0≤s<t≤T

|x2
s,t|

|t − s|
2
q

.
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Remark. Likewise, when p∈ [2, 3), one defines the p-variation distance
between two such multiplicative functionals y, z is defined by

δp(y, z) = Varp,[0,T ](y
1 − z1) + Varp/2,[0,T ](y

2 − z2)

where

Varq,[0,T ](y
2) :=sup





(
k−1∑

ℓ=0

|y2
tℓ,tℓ+1

|q
)1

q

, 0≤ t0≤ t1≤· · ·≤ tk ≤T, k ≥ 1



.

The distance ρq has been introduced in [24] although rough path the-
ory was originally developed for the distance δp in p-variation. Recently
several authors came back to Hölder distances ρq (see e.g. [16, 6, 9]).

The following so-called universal limit theorem theorem (including
variants) describes the continuity of the so-called Itô map y 7→ x with
respect to both δp and ρp-distances and will be the key for our main
result. It was the starting point of rough path theory initiated by T.
Lyons. Several statements (or improvements) can be found e.g. in [25,
14, 15, 26, 9]. We state here some versions coming from [14] and [16].

Theorem 1. Let α∈ (0, 1].

(a) (See [16]) Let f : [0, T ]×Rd → M((d + 1)× (d + 1), twice differen-
tiable with a bounded first differential and an α-Hölder second differen-
tial. Suppose the multiplicative functional y satisfies ‖y1 − x1‖q,Hol +
‖y2 − x2‖q/2,Hol < +∞ for q ∈ (2, 2 + α). Then Equation (26) has a
unique solution starting at x0.

When y = W(ω) (i.e. given by (27)), the first component x1 = x
of the solution solution x = (x1,x2) a.s. coincides with (Xt(ω))t∈[0,T ],
solution to the SDE in the Stratonovich sense.

Furthermore, the Itô map y 7→ x is continuous for the Hölder ρq

distance (and locally Lipschitz in sense described in [16]).

(b) (See [9, 17]) If f ∈ C2
(
[0, T ]×Rd,M((d + 1)× (d + 1)

)
is such that

f.∇f is bounded with an α-Hölder differential, then the conclusions of
claim (a)still hold.

3.2 Quantization of the SDE and main result

Let (αN )N≥1 denote a sequence of quantizers of the Brownian mo-
tion. Each αN is made up of N functions (or elementary quantizer)
αN

n : [0, T ] → Rd, n = 1, . . . , N . For convenience a component “0”
will be added accordingly to each elementary quantizer αN

n by setting
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αN,0
n (t) = t (which exactly quantizes the function W 0

t = t). We assume
that every elementary quantizer αN

n is a continuous function with finite

variation over [0, T ]. The resulting Voronoi quantizer Ŵ = Ŵ αN
of W

reads

Ŵt =

N∑

n=1

αN
n (t)1{W∈Cn(αN )}, t∈ [0, T ].

Our aim is to approximate the diffusion process (xt)t∈[0,T ] solution

to the SDE (25) by the solution X̃N of the equation

dX̃N
t = f

(
X̃N

t

)
dŴt, X̃N

0 = x0.

as N → ∞. In fact, a less formal expression is available for the process
X̃N , namely

X̃N =

N∑

n=1

x̃N
n 1{W∈Cn(αN )}

where each xN
n is solution to the ODE

dx̃N
n (t) = f(x̃N

n (t)) dαN
n (t), x̃N

n (0) = x0, n = 1, . . . , N. (28)

Note that XN is a non-Voronoi quantization of (xt) (at level N). The
starting natural idea was to hope that XN converges to (xt) owing to

the convergence of Ŵ N toward W . . . in an appropriate sense. Since we
will use the above Theorem 1, we need to prove the convergence of the

geometric functional ŴN related to Ŵ toward that of W . The quantity

ŴN is formally defined by mimicking the definition of W, namely, for
every (s, t)∈ [0, T ], 0 ≤ s < t ≤ T ,

Ŵ1,N(ω) :=Ŵt(ω) − Ŵs(ω), Ŵ2,N
s,t (ω) :=

(∫ t

s
(Ŵ i

u − Ŵ i
s)dŴ j

u

)

i,j=0,...,d

(ω)

still with the convention Ŵ 0,N
t = t. The integral must be understood

in the usual Stieltjes sense.

Theorem 2. Let (Ŵ N )N≥1 be a sequence of stationary quadratic func-
tional quantizers of the Brownian motion converging to W in L2

L2
T

(P).

Let f be like in claims (a) or (b) in Theorem 1. Consider for every
N ≥ 1, the solutions of the quantized ODE

dX̃N
t = f(X̃N

t ) dŴ N
t , N ≥ 1.
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as defined by (28). Let X and X̃N denote the enhanced paths of X,

solution to (25), and X̃N respectively. Then, for every q∈ (2, 2 + α),

ρq(X̃
N ,X)

P−→ 0.

Furthermore if r > 2
3 then

ρq(X̃
⌊eNr ⌋,X)

a.s.−→ 0.

In view of what precedes this result is, as announced, a straightfor-
ward corollary of the continuity of the Itô map established Theorem 1,

once the convergence ρq(Ŵ
N ,W) in probability is established for any

q ∈ (2, 3). A slightly more derailed proof is proposed at the end of
Section 5.

In fact we will prove a much precise statement concerning the Brow-
nian motion since we will establish for every q > 2 the convergence in

every Lp(P), 0 < p < ∞, of ρq(Ŵ
N ,W) with an explicit Lp(P)-rate of

convergence in the scale (log N)−θ, θ∈ (0, 1).
These rates can be transferred to the convergence of the quantized

SDE, conditionally to some events on which the Itô map is itself Lips-
chitz continuous for the distances ρq. Several results of local Lipschitz
continuity have been established recently, especially in [6], [9], [16], [17],
although not completely satisfactory from a practical point of view. So
we decided not to reproduce (and take advantage of) them here.

The proof is divided into two steps: the convergence for the Hölder
semi-norm) of the regular path component is established in Section 4
(in which more general processes are considered) and the convergence of
approximate Lévy areas in Section 5 (entirely devoted to the Brownian
case for the sake of simplicity).

Remarks. • There is a small abuse of notation in the above Theorem
since X̃N is not a Voronoi quantizer of X: this quantization of X is
defined on the Voronoi partition (for the L2

T,Rd-norm) induced by the

quantization of the Brownian motion W .

• The same results holds for the Brownian bridge, the Ornstein-
Uhlenbeck process and more generally for continuous Gaussian semi-
martingales that satisfy the Kolmogorov criterion.
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4 Convergence of the paths of processes in Hölder

semi-norm

4.1 A general setting including stationary functional
quantization

In this section we investigate the connections between the celebrated
Kolmogorov criterion and the tightness of some classes of sequences of
processes for the topology of 1

q -Hölder convergence. In fact this con-
nection is somehow the first step of the rough path theory, but we will
look at it in a slightly different way. Whatsoever this naive pathwise
convergence is not sufficient to get the continuity of the Itô map in a
Brownian framework and we will also have to deal for our purpose with
the multiplicative functional (see Section 5).

But at this stage we aim at showing that when a sequence (Y N )N≥1

satisfies some “stationarity property” with respect to a process Y , sev-
eral properties of Y can be transferred to the Y N . Indeed, the same
phenomenon will occur for the multiplicative function (see the next
section).

If Y satisfies the Kolmogorov criterion and (GN )N≥1 denotes a se-
quence of sub-σ-fields of A, then a sequence of processes defined by

Y N := E(Y | GN ), N ≥ 1,

where the conditional expectation is considered in the functional sense
(see Appendix) is (C-tight and) tight for a whole family of topologies
induced by convergence in 1

q -Hölder sense.

Definition 2. Let p ≥ 1, θ > 0. A process Y = (Yt)t∈[0,T ] satisfies the

Kolmogorov criterion (Kp,θ) if there is a real constant CKol
T

> 0 such
that

∀ s, t∈ [0, T ], E|Yt−Ys|p ≤ CKol
T

|t−s|1+θ and Y0∈ Lp(P).

Theorem 3. Let Y := (Yt)t∈[0,T ] be a pathwise continuous process
defined on (Ω,A, P) satisfying the Kolmogorov criterion (Kp,θ). Let
(GN )N≥1 be a sequence of sub-σ-fields of A. For every N ≥ 1 set

Y N := E(Y | GN ).

For every N ≥ 1, Y N has a pathwise continuous version satisfying

∀ t∈ [0, T ], Y N
t = E(Yt | GN

) a.s.

Furthermore, if one of the following conditions is satisfied
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(a) GN ⊂ GN+1,

(b) There exists an everywhere dense subset D ⊂ [0, T ] such that

∀ t∈ [0, T ], Y N
t

P−→ Yt.

(c) |Y N − Y |Lr
T

P−→ 0 for some r ≥ 1,

then

∀ q >
1

θ
, ∀ p∈ [1, qθ), ‖Y − Y N‖sup + ‖Y − Y N‖q,Hol

Lp

−→ 0.

The proof of the theorem is a variant of the proof of the Kolmogorov
criterion for functional tightness of processes. It consists in a string
of several lemmas. For the following classical lemma, we refer to [14]
(where it is stated and proved for semi-norms in p-variation).

Lemma 1. Let x, y∈ C([0, T ], Rd) and let q ≥ 1. Then

(a) ‖x − x(0)‖sup ≤ ‖x‖q,Hol.

(b) ‖x + y‖q,Hol ≤ ‖x‖p,Hol + ‖y‖q,Hol if q ≥ 1,

(c) For every q > q′ ≥ 1, ‖x‖q
q,Hol ≤ (2‖x‖sup)q−q′‖x‖q′

q′,Hol.

(d) Claims (a)-(b)-(c) remain true with the p-variation semi-norm
Varq,[0,T ] instead of the 1

q -Hölder semi-norm.

Lemma 2. Let p ∈ [1,∞). If Y satisfies the Kolmogorov criterion
(Kp,θ) then, for every N ≥ 1, the process Y N defined by Y N

t =

E(Yt | GN
) has a continuous modification which is θ′

p -Hölder continu-

ous for every θ′∈ (0, θ) (i.e. ‖Y N‖ p
θ′

,Hol < +∞ a.s.). Furthermore, the

sequence (Y N )N≥1 is C-tight and for every θ′ ∈ (0, θ), there exists a
random variable Zθ′ ∈ Lp

R
(P) such that

P(dω)-a.s. ‖Y (ω)‖ p
θ′

,Hol ≤ Zθ′ (29)

and
∀N ≥ 1, ‖Y N (ω)‖ p

θ′
,Hol ≤ E(Zθ′ | GN )(ω). (30)

In particular, the sequence of Hölder semi-norms (‖Y N‖ p
θ′

,Hol)N≥1

is Lp-uniformly integrable.
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Remark. As a by-product of the proof we also get that

E(Zp
θ′) ≤ Cp,T,θ,θ′C

Kol
T

where CT,p,θ,θ′ is a finite real constant that only depends upon p, T , θ
and θ′ (and not on Y or the σ-fields GN ).

Proof. First it follows form the Kolmogorov criterion that for every
N ≥ 1, Y N admits a continuous modification which is θ′

p -Hölder for

every θ′∈ (0, θ). Moreover the sequence (Y N )N≥1 is C-tight since every
Y N satisfies the same Kolmogorov criterion (Kp,θ) and Y N

0 = E(Y0|GN
)

is tight on R (see [1], [29] p.26). Now, let s, t∈ [0, T ], let m, n ≥ 1 be
two fixed integers. First note that

sup
s,t∈[0,T ], t≤s≤t+ T

2n

|Yt − Ys| ≤ 2
∑

m≥0

max
0≤k≤2n+m−1

|Ytn+m
k+1

− Ytn+m
k

| (31)

and

max
0≤k≤2n+m−1

|Ytn+m
k+1

− Ytn+m
k

|p ≤
2n+m−1∑

k=0

|Ytn+m
k+1

− Ytn+m
k

|p.

For every θ′∈ (0, θ), set

Zθ′ :=
2

T


∑

n≥0

2n θ′

p sup
s,t∈[0,T ], t≤s≤t+ T

2n

|Yt − Ys|


 . (32)

Taking the Lp-norm in (31) yields

‖Zθ′‖p ≤
(

2

T

) θ′

p ∑

n≥0

2
n θ′

p ‖ sup
s,t∈[0,T ], t≤s≤t+ T

2n

|Yt − Ys|‖p

≤ 2

(
2

T

) θ′

p ∑

n≥0

2
n θ′

p

∑

ℓ≥0

‖ max
0≤k≤2n+m−1

|Ytn+m
k+1

− Ytn+m
k

|‖p .

On the other hand, owing to the the Kolmogorov criterion (Kp,θ),

E max
0≤k≤2n+m−1

|Ytn+m
k+1

− Ytn+m
k

|p ≤
2n+m−1∑

k=0

E|Ytn+m
k+1

− Ytn+m
k

|p

≤ 2n+mCKol
T 2−(n+m)(1+θ)T−(1+θ)

= CKol
T T−(1+θ)2−(n+m)θ.
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Hence

E Zp
θ′ ≤ CKol

T Cp,T,θ,θ′


∑

n≥0

∑

m≥0

2n θ′−θ
p 2−m θ

p




p

< +∞

where the finite real constant Cp,T,θ,θ′ only depends on p, T , θ and θ′.
On the other hand, for every δ ∈ [0, T ], there exists a integer nδ ≥ 1
such that 2−(1+nδ) ≤ δ/T ≤ 2−nδ . Hence,

δ−θ′ sup
s,t∈[0,T ], t≤s≤t+δ

|Yt−Ys|p ≤ 2(1+nδ)θ′T−θ′× sup
s,t∈[0,T ], t≤s≤t+ T

2n

|Yt−Ys|p ≤ Zp
θ′ .

Consequently, for every s, t∈ [0, T ], and every ω∈ Ω,

|Yt(ω) − Ys(ω)| ≤ Zθ′(ω)|t − s|
θ′

p

i.e.
‖Y (ω)‖ p

θ′
,Hol ≤ Zθ′(ω).

Finally, it follows from Jensen’s Inequality that for every s, t∈ Q∩[0, T ],

P(dω)-a.s. |Y N
t (ω) − Y N

s (ω)| ≤ E(Zθ′ | GN )(ω)|t − s|θ′ .

In particular this means that, for every p ≥ 1 and every θ′∈ (0, θ),

P(dω)-a.s. ‖Y N (ω)‖ p
θ′

,Hol ≤ E(Zθ′ | GN )(ω) < +∞

and satisfies the Lp-uniform integrability assumption. ♦

Proof of Theorem 3. The sequence (Y N )N≥1 being C-tight on
(C([0, T ], Rd), ‖ . ‖sup), so is the case of the the sequence (Y N , Y )N≥1

on (C([0, T ], R2d), ‖ . ‖sup) since the product topology coincides with the
uniform topology. Let Q = w-limN P(Y N′ ,Y ) denote a weak functional

limiting value of (Y N , Y )N≥1. If Ξ = (Ξ1, Ξ2) denotes the canonical
process on (C([0, T ], R2d), ‖ . ‖sup), it is clear that QΞ2 = P

Y
.

� Convergence of the sup-norm. Assume that (c) holds: the functional
y 7→ |y1(t) − y2(t)|Lr

T
is continuous on (C([0, T ], R2d), ‖ . ‖sup), conse-

quently, |Ξ1−Ξ2|Lr
T

= 0 Q-a.s. i.e. Q = P(Y,Y ) so that (Y N , Y )
L(‖ . ‖sup)−→

(Y, Y ) as N → ∞ which simply means that ‖Y N − Y ‖sup
P−→ 0. On

the other hand,it follows from Lemma 2 that, for every N ≥ 1,

‖Y N − Y ‖p
sup ≤ Cp,T

(
E(Zp

θ′ | GN ) + Zp
θ′

)
a.s.
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(for a given fixed θ′∈ (0, θ)) which implies that (‖Y N − Y ‖p
sup)N≥1 is

uniformly integrable. Finally,

E ‖Y N − Y ‖p
sup −→ 0 as N → ∞.

Assume that (b) holds: it follows that, for every t1, . . . , tk∈ D, one has

(Y N
t1 , . . . , Y N

tk
)

P−→ (Yt1 , . . . , Ytk), which in turn implies that the conver-

gence (Y N
t1 , . . . , Y N

tk
, Yt1 , . . . , Ytk)

L−→ (Yt1 , . . . , Ytk , Yt1 , . . . , Ytk). This
means that Q and P(Y,Y ) have the same finite dimensional marginals
i.e. Q = P(Y,Y ). One concludes like in (c).

If (a) holds, for every t ∈ [0, T ], Y N
t → Yt P-a.s., so that (b) is

satisfied.

� Convergence of the Hölder semi-norm. Let q ≥ 1. As concerns the
convergence of the 1

q -Hölder semi-norm, one proceeds as follows. Let

q′∈ (p
θ , q) and set θ′ := p

q′ ∈ (0, θ). It follows from Lemma 1(b)-(c) that

‖Y − Y N‖q,Hol ≤ 21− q′

q ‖Y − Y N‖1− q′

q
sup ×

(
‖Y ‖q′,Hol + ‖Y N‖q′,Hol

) q′

q .

Now let Z := Zθ′ be defined by (32). Then,

‖Y ‖q′,Hol + ‖Y N‖q′,Hol ≤ Z +
(
E(Z | G

N
)
)
.

Hence, the sequence (‖Y ‖q′,Hol + ‖Y N‖q′,Hol)N≥1, is tight since it is

Lp-bounded. On the other hand, ‖Y − Y N‖sup
Lp

−→ 0 so that

‖Y − Y N‖q,Hol
P−→ 0 as N → ∞.

Now let θ̃ = p
q ∈ (0, θ). The same argument as above shows that

‖Y −Y N‖q,Hol ≤ Z̃ + E(Z̃ | G
N

) where Z̃ = Zeθ
is still given by (32). As

a consequence, (‖Y − Y N‖p
q,Hol)N≥1 is uniformly integrable since, for

every N ≥ 1, Jensen’s Inequality implies

‖Y − Y N‖p
q,Hol ≤ 2p−1

(
Z̃p + E(Z̃p | G

N
)
)

which finally implies that ‖Y − Y N‖q,Hol
Lp

−→ 0. ♦

4.2 Application to stationary quantizations of Brownian
motion: convergence and rates

Theorem 4. (a) Let (Ŵ N )N≥1 be a sequence of stationary quadratic
functional quantizers of a standard d-dimensional Brownian motion W
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defined by (11) or (17) converging to W in a (purely) quadratic sense,

namely ‖ |W − Ŵ N |L2
T
‖2 → 0 as N → ∞. Then, for every q > 2,

∀ p∈ (0,∞), ‖W − Ŵ N‖q,Hol
Lp

−→ 0 as N → ∞.

(b) Let q > 2. If, for every N ≥ 1, Ŵ N is an optimal product quanti-
zation at level N . Then, for every p∈ (0,∞),

∥∥∥‖W − Ŵ N‖q,Hol

∥∥∥
p

= o
(
(log N)

− 3
2

min
(

1
5
(1− 2

q
), 1

p

)
+α
)
, ∀α > 0.

The proof of this Theorem is a consequence of the above Theorem 3.
So we need to get accurate estimates for the increments of the processes

W − Ŵ N . This is the aim of the following lemma.

Lemma 3. Let p ∈ [2,+∞). Let Ŵ N , N ≥ 1, denote a sequence of
optimal product quadratic quantizers. For every ρ ∈ (0, 1

2 ) and every
ε∈ (0, 3), for every s, t∈ [0, T ], s ≤ t,
∥∥∥(Wt − Ws) − (Ŵ N

t − Ŵ N
s )
∥∥∥

p

≤ Cρ,p,T,d,ε|t − s|ρ(log N)
−( 1

2
−ρ)∧( 3−ε

2p
)
.

(33)
In particular, if p∈ (2, 3), then
∥∥∥(Wt − Ws) − (Ŵ N

t − Ŵ N
s )
∥∥∥

p

≤ Cρ,p,T,d|t − s|ρ(log N)−( 1
2
−ρ). (34)

Proof. We may assume without loss of generality that we deal with a

one-dimensional Brownian motion W , quantized at level N ′ = ⌊N 1
d ⌋

since everything is done component by component. Set for every k ≥ 1,
ξ̃k := ξk − ξ̂Nk

k where N1, . . . , Nk, . . . denotes the optimal bit allocation
of an optimal product quadratic quantization at level N ′. Keep in mind
that for every k > L

W
(N ′), Nk = 1 and that of course N1 · · ·NL

W
(N ′) ≤

N ′. The random vectors (ξ̃k)k≥1 are independent and centered.
It follows from the K-L expansion of W and its product quantization

that

(Wt − Ws) − (Ŵ N ′

t − Ŵ N ′

s ) =
∑

k≥1

λk ξ̃k

(
eW
k (t) − eW

k (s)
)
.

Then, it follows from the B.D.G. Inequality for discrete time martin-
gales that
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∥∥∥(Wt − Ws) − (Ŵ N ′

t − Ŵ N ′

s )
∥∥∥

p

≤ Cp,T

∥∥∥∥∥∥

∑

k≥1

λk ξ̃k(e
W
k (t) − eW

k (s))2

∥∥∥∥∥∥

1
2

p
2

≤ Cp,T


∑

k≥1

λ1−ρ
k ‖ξ̃k‖2

p




1
2

|t − s|ρ

since, for every k ≥ 1,

(eW
k (t) − eW

k (s))2 =
8

T
sin2

(t − s√
λk

)
cos2

(t − s√
λk

)
≤ 8

T
|t − s|2ρλ−ρ

k .

The random variables ξ̂Nk
k being an optimal quadratic quantization

of the one-dimensional normal distribution for every k∈{1,. . ., L
W

(N ′)},
it follows from (16) that, there exists for every ε ∈ (0, 3), a constant
κp,ε such that

∀m ≥ 1, ‖ξ̃k‖p = ‖ξ − ξ̂Nk
k ‖p ≤ κp,ε

1

N
1∧ 3−ε

p

k

where ξ̂m denotes the (unique) optimal quadratic quantization at level
m of a normally distributed scalar random variable ξ. As a consequence,

∥∥∥(Wt − Ws) − (Ŵ N ′

t − Ŵ N ′

s )
∥∥∥

p

≤ Cp,T,ε|t−s|ρ

∑

k≥1

λ1−ρ
k

1

N
2(1∧ 3−ε

p
)

k




1
2

.

� Temporarily assume that p ∈ [2, 3). One may choose ε so that 1 ∧
3−ε
p = 1. Now, keeping in mind that L′ := L

W
(N ′) ∼ log N ′ and

λk ≤ c k−2 for a real constant c > 0, one gets

∑

k

λ1−ρ
n

1

N2
k

≤ λρ
L′

L′∑

k=1

λk

N2
k

+
∑

k>L′

λ1−ρ
k

≤ Cρ

(
(log N ′)2ρ

L′∑

k=1

λk

N2
k

+ (log N)2ρ−1

)
.

Now, following e.g. [18], we know that the optimal bit allocation yields

L′∑

k=1

λk

N2
k

≤ C

T
(log N ′)−1
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so that, finally
∥∥∥(Wt − Ws) − (Ŵ N ′

t − Ŵ N ′

s )
∥∥∥

p

≤ Cρ,p,T |t − s|ρ(log N ′)ρ−
1
2 .

� Assume now that p∈ [3,+∞) and ε ∈ (0, 3). Set p̃ = p
3−ε > 1 and q̃

its conjugate exponent. Then, Hölder Inequality implies

L′∑

k=1

λ1−ρ
k

N
2
p̃

k

≤
(

L′∑

k=1

λk

N2
k

) 1
p̃
(

L′∑

k=1

λ
1− ρp

p−3+ε

k

) 1
q̃

.

We inspect now three possibles cases for ρ.

• If 0 < ρ < 1
2 (1 − 3−ε

p ), then 1 − ρp
p−3+ε > 1

2 so that
∑

k≥1 λ
1− ρp

p−3+ε

k <
+∞, which in turn implies that

L′∑

k=1

λ1−ρ
k

N
2
p̃

k

≤ Cρ,p,T

(
log N ′

)− 3−ε
p

.

Furthermore 1 − ρ
2 > 3−ε

p .

• If 1
2(1 − 3−ε

p ) < ρ < 1
2 , then, 1 − ρ

2 < 3−ε
p and 1 − ρp

p−3+ε = 1
2 so that

∑
k≥1 λ

1− ρp
p−3+ε

k < +∞

L′∑

k=1

λ1−ρ
k

N
2
p̃

k

≤ Cρ,p,T

(
log N ′

)− 3−ε
p ×

(
L

W
(N ′)

2ρp
p−3+ε

−1
)1− 3−ε

p

= Cρ,p,T

(
log N ′

)2ρ−1
.

• If 1
2(1 − 3−ε

p ) = ρ < 1
2 , then 1 − ρ

2 = 3−ε
p and 1 − ρp

p−3+ε = 1
2 so

that
∑L′

k=1 λ
1− ρp

p−3+ε

k ≤ Cρ,p,T log log N ′ (keep in mind L′ = LW (N ′) ∼
log N ′). Hence, for every ε′∈ (0, ε),

L′∑

k=1

λ1−ρ
k

N
2
p̃

k

= o
(
(log N ′)−

3−ε′

p

)
.

As conclusion, we get that
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(
∑

k

λ1−ρ
k ‖ξ̃k‖2

p

) 1
2

≤


∑

k

λ1−ρ
k

1

N
2(1∧ 3−ε

p
)

k




1
2

= O
(
(log N ′)−( 1

2
−ρ)∧( 3−ε

2p
)
)

(35)

which completes the proof since log(1 + N ′) > 1
d log N (which implies

log N ′> 1
d log(N/2)). ♦

Proof of Theorem 4. (a) Owing to the monotonicity of the Lp-norms,
it is enough to show that, the announced convergence holds for every
q > 2 and every p > 2q

q−2 or equivalently for every p > 2 and every

q > 2p
p−2 . This statement follows for the 1

q -Hölder (semi-)norm follows

from Theorem 3(c). Indeed W satisfies the Kolmogorov Kp,θ with θ =
p/2−1. On the other hand, it follows from [13] that, for any sequence of

(Voronoi) quantizations Ŵ N at level N converging in L2
L2

T

(P) toward

W , this convergence also holds in the a.s. sense. So Criterion(c) is
fulfilled.

(b) Let q > 2. The process W −Ŵ N satisfies Kp,ρp−1 for every ρ∈ (1
p , 1

2)
with “Kolmogorov constants”

CKol
T,p = Cp,T,ρ,d,ε(log N)

−p[( 1
2
−ρ)∧( 3−ε

2p
)]
, ε∈ (0, 3).

We wish to apply Lemma 2 (and the remark that follows).

� Assume 0 < p < 5q
q−2 . Then there exists η > 0 such that p < p′ =

5q
q−2+η . Set θ′ = p′

q . One cheks that 1
p′ + 1

q < 1
2 so that there exists

η′ > 0 such that ρ = 1
p′ + 1

q + η′ < 1
2 . Elementary computations show

that 1
2 − ρ < 3

2p . Let ε∈ (0, 3) such that 1
2 − ρ < 3

2p − ε. Consequently,

Lemma 2 (and the remark that follows) imply that
∥∥∥‖W − Ŵ N‖q,Hol

∥∥∥
p′

≤ Cq,η,η′,T,ε(log N)−( 1
2
−ρ)

and for any small enough α > 0, one my specify η, η′ and ε so that
1
2 − ρ = 3

10(1 − 2
q ) − α. Finally this bounds holds true for p ∈ (0, p′)

since the the Lp-norm is non-decreasing.

� Now, if p ≥ 5q
q−2 , one checks that 3

2p ≥ 1
2 −

(
1
p + 1

q

)
. It becomes

impossible to specify ρ ∈ (0, 1
2) so that θ′ = p

q < θ = ρp − 1 and

1 − ρ > 3
2p . So the same specifications as above lead to
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∥∥∥‖W − Ŵ N‖q,Hol

∥∥∥
p′

≤ Cq,η,η′,ε,T (log N)
− 3−ε

2p

which yields the announced result. ♦

5 Convergence of stationary quantizations of the

Brownian motion for the ρq-Hölder distance.

In view of what will be needed to apply this theorem to the Brownian
motion and its functional quantizations, we need to prove a counterpart
of Lemmas 2 and 3 for W2

s,t. However, for the sake of simplicity, by
contrast with the previous section, we will only deal with the case of
the Brownian motion and its stationary quantizations.

The main result of this section is the following Theorem.

Theorem 5. Let q > 2.

(a) Let (Ŵ N )N≥1 be a sequence of stationary quadratic functional
quantizers of a standard d-dimensional Brownian motion W defined
by (11) or (17) converging to W in a (purely) quadratic sense, namely

‖ |W − Ŵ N |L2
T
‖2 → 0 as N → ∞. Then,

∀ q > 2, ∀ p > 0,
∥∥∥ρq(W,ŴN )

∥∥∥
p

−→ 0 as N → ∞.

(b) Let q > 2. Assume that, for every N ≥ 1, Ŵ N is an optimal product
quantization at level N of W . Then, for every q > 2 and every p > 0,

∥∥∥‖W2 − Ŵ2,N‖ q
2
,Hol

∥∥∥
p

= o
(
(log N)

− 3
2

min
(

2
7
(1− 2

q
), 1

p

)
+α
)
, ∀α > 0,

so that, finally,

∥∥∥ρq(W,ŴN )
∥∥∥

p

= o
(
(log N)−

3
2

min
(

1
7
(1− 2

q
), 1

p

)
+α
)
, ∀α > 0.

(c) If r > 2
3 , then

ρq(W,Ŵ⌊eNr ⌋) = o
(
N

−( 3
2
r−1) q−2

7q
+α
)
∀α > 0, P-a.s.

Note that the result of interest for our purpose (convergence on
multi-dimensional stochastic integrals) corresponds to q ∈ (2, 3). The
proposition below appears as the counterpart of Lemma 2 on the way
to the proof.
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Proposition 3. Let p > 2.

(a) Let W2
s,t be defined by (27). For every θ̃′∈ (0, p− 1), there exists a

random variable Z
(2)

θ̃′
∈ Lp such that

P-a.s. ∀ s, t∈ [0, T ], |W2
s,t| ≤ Z

(2)

θ̃′
|t − s|

θ̃′

p .

(b) Let

Ŵ2,N
s,t (ω) =

(∫ t

s
(Ŵ i

u − Ŵ i
s)dŴ j

u

)

i,j=0,...,d

(ω), s, t ∈ [0, T ], s ≤ t,

where Ŵ = Ŵ N is a stationary quantization of W (the integration
holds in the Stieltjes sense). Then, for every p > 2 and every θ̃′ ∈
(0, p − 1),

P-a.s. ∀ s, t∈ [0, T ], |Ŵ2,N
s,t | ≤ E(Z

(2)

p,θ̃′
| G

N
)|t − s|

θ̃′

p .

(c) Let W̃2,N
s,t = W2

s,t − Ŵ2,N
s,t where Ŵ = Ŵ N is now an optimal

quadratic product quantization of W at level N . Then, if p > 1
ρ , for

every θ̃′∈ (0, p(ρ + 1
2) − 2), for every ε∈ (0, 3) and every δ > 0, there

exists a real constant Cρ,p,T,d,ε,δ > 0 such that

∥∥∥∥∥∥
sup

s,t∈[0,T ]

|W̃2,N
s,t |

|t − s|
θ̃′

p

∥∥∥∥∥∥
p

≤ Cρ,p,T,d,ε,δ

(
log N

)−( 1
2
−ρ)∧ 3−ε

2(p+δ) .

Proof. (a) The random variable Z
(2)

θ̃′
of interest is defined by

Z
(2)

θ̃′
:=

2

T

∑

n≥0

2n θ̃′

p sup
s≤t≤s+ T

2n

|W2
s,t|.

Let s, t∈ [0, T ], s ≤ t ≤ s+ T
2n . We know from the multiplicative tensor

property that, for every u∈ [s, t],

W2
s,t = W2

s,u + W2
u,t + Ws,u ⊗ Wu,t

and that, for every i, j∈ {0, . . . , d},

|W i
s,u ⊗ W j

u,t| ≤
1

2
(|W i

s,u|2 + |W j
u,t|2).
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To evaluate supt∈[s,s+ T
2n ]|W

2,
s,t|, we may restrict to dyadic numbers ow-

ing to the continuity in (s, t) of W2
s,t. As a consequence, we have, still

following the classical scheme of Kolmogorov criterion

sup
t∈[s,s+ T

2n ]

|W2
s,t| ≤ 2

∑

m≥0

max
0≤k≤2n+m−1

|W2
tn+m
k ,tn+m

k+1
|

+ max
0≤k≤2n+m−1

|Wtn+m
k ,tn+m

k+1
|2.

Now

E max
0≤k≤2n+m−1

|W2
tn+m
k ,tn+m

k+1
|p ≤

2m+n−1∑

ℓ=0

E |W2
tn+m
ℓ ,tn+m

ℓ+1
|p

and

E max
0≤k≤2n+m−1

|Wtn+m
k ,tn+m

k+1
|p ≤

2m+n−1∑

ℓ=0

E |Wtn+m
ℓ ,tn+m

ℓ+1
|p

where the norms | . | are the canonical Euclidean norms on the spaces
M((d + 1), (d + 1)) and Rd+1 respectively.

It is clear that, for every i 6= j, i, j ≥ 1 and every t ≥ s,

‖W2,ij
s,t ‖p =

∥∥∥∥
∫ t

s
(W i

u − W i
s)dW j

u

∥∥∥∥
p

≤
∥∥∥∥
∫ t

s
(W i

u − W i
s)dW j

u

∥∥∥∥
p

≤ CBDG
p

∥∥∥∥
∫ t

s
(W i

u − W i
s)

2du

∥∥∥∥

1
2

p
2

≤ Cp|t′ − t|

whereas

‖ |Wt′ − Wt|2‖p = |t′ − t|‖ |W1|‖p = Cp,d|t′ − t|.

Noting that W 0
t = t and, if i = j, 1 ≤ i ≤ d, W2,ii

s,t = 1
2(W i

t − W i
s)

2

shows that the above upper-bound still holds for i = j and i or j = 0.
Consequently, we also have

‖W2,ij
s,t ‖p ≤ Cp,d|t′ − t|.

Consequently
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E max
0≤k≤2n+m−1

|W2
tn+m
k ,tn+m

k+1

|p ≤ Cp,d

2n+m−1∑

k=0

(
T

2n+m

)p

=Cp,d,T2(n+m)(1−p)

so that

‖Z(2)

θ̃′
‖p ≤ Cp,d,T

∑

n≥0

2
n θ̃′

p

∑

m≥0

2
(n+m)( 1

p
−1)

= Cp,d,T

∑

n≥0

2
n( θ̃′

p
−1)

< +∞

since θ̃′ < p − 1.
On the other hand, one has obviously

sup
s,t∈[0,T ],s 6=t

|W2
s,t|

|t − s|
θ̃′

p

≤ Z
(2)

θ̃′
< +∞ a.s.

Lemma 2(a) applied to W (which satisfies (Kp, p
2
−1)) yields for every

θ′∈ (0, p
2 − 1) the existence of Z(1)∈ Lp(P) such that

sup
s,t∈[0,T ],s≤t

|W1
s,t|

|t − s|
θ′

p

≤ Z
(1)
θ′ a.s.

As a consequence, combining these two results shows that, for every
q > 2p

p−2 ,

ρq(W, 0) < Z = Z
(1)
θ′ + Z

(2)

θ̃′
∈ Lp(P)

where Z(1) is related to θ′ = p
q ∈ (0, p

2 − 1) and Z(2) is related to

θ̃′ = 2p
q ∈ (0, p − 2).

(b) If i 6= j, 0 ≤ i, j ≤ d, it follows from Proposition 2 that

Ŵ2,ij,N
s,t = E(Ŵ2,ij,N

s,t | GN ) where GN = σ(Ŵ ) and Ŵ N = (Ŵ i,N )1≤i≤d

is an optimal product quantization at level N (which means that for

each component W i, Ŵ i,N is an optimal product quantization at level

N ′ = ⌊N 1
d ⌋).

When i = j ≥ 1, |Ŵ2,ii,N
s,t | ≤ 1

2E
(
(W i

t − W i
s)

2 | GN )
)
. One derives

that

|Ŵ2,ii,N
s,t |

|t − s|
θ̃′

p

≤ E


 |W2,ii

s,t |

|t − s|
θ̃′

p

| GN


 ≤ E

(
(Z

(2)

θ̃′
)

θ̃′

p | GN

)
.

When i = j = 0, Ŵ2,ii,N = W2,ii = 1
2 (t − s)2.
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(c) In this claim, the random variable Z
(2),N

θ̃′
of interest is defined by

Z̃
(2),N
θ′ =

2

T

∑

n≥0

2
n θ̃′

p sup
s≤t≤s+ T

2n

|W̃2,N
s,t |

and we aim at showing that it lies in Lp(P) with a control on its Lp-

norm as a function of N . One first derives for W̃2,N
s,t the straightforward

identity when s ≤ u ≤ t

W̃2,N
s,t = W̃2,N

s,u + W̃2,N
u,t + W̃ N

s,u,t

where

W̃ N
s,u,t = Ws,u ⊗ Wu,t − Ŵ N

s,u ⊗ Ŵ N
u,t

= (Ws,u − Ŵ N
s,u) ⊗ Wu,t + Ŵ N

s,u ⊗ (Wu,t − Ŵ N
u,t) (36)

with Wr,s := Wr − Ws if r ≥ s, etc. One derives from (36) that

|W̃2,N
s,t | ≤ 2

∑

m≥0

max
0≤k≤2n+m−1

|W̃2,N

tn+m
k ,tn+m

k+1

| (37)

+2
∑

m,m′≥0

max
0≤k≤2n+m−1

0≤k′≤2n+m′−1

|W 2,N

tn+m
k ,tn+m

k+1

− Ŵ 2,N

tn+m
k ,tn+m

k+1

||Wtn+m
k′

,tn+m
k′+1

| (38)

+2
∑

m,m′≥0

max
0≤k≤2n+m−1

0≤k′≤2n+m′−1

|W 2,N

tn+m
k ,tn+m

k+1

− Ŵ 2,N

tn+m
k ,tn+m

k+1

||Ŵtn+m
k′

,tn+m
k′+1

|. (39)

where we used that |u ⊗ v| ≤ |u||v|.
We will first deal with deal with the first term in (37). We note that

E max
0≤k≤2n+m−1

|W̃2,N

tn+m
k ,tn+m

k+1

|p ≤
∑

0≤k≤2n+m−1

E|W̃2,N

tn+m
k ,tn+m

k+1

|p.

Let s, t∈ [0, T ], s ≤ t and i, j ∈ {1, . . . , d}, i 6= j. One checks that
the following decomposition holds

W̃2,ij,N
s,t =

∫ t

s
W i

s,ud(W j
u − Ŵ j,N

u )

︸ ︷︷ ︸
(A)

+

∫ t

s
Ŵ j,N

u,t d(W i
u − Ŵ i,N

u )

︸ ︷︷ ︸
(B)

.

Let us focus on (A). First not that, owing to Proposition 1 applied

with Ft = σ(W i
u, u ∈ [0, T ], W j

s , s ≤ t),
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(A) =
∑

n≥1

ξ̃j
n

∫ t

s
W i

s,u cos
( u√

λn

)
du.

Using that W i and W j are independent, one derives that (A) is the

terminal value of a martingale with respect to the filtration σ(ξj
k, k ≤

n, W i
u, 0 ≤ u ≤ T ), n ≥ 1 so that combining B.D.G. and Minkowski

inequalities yields, with the notations of Lemma 3,

E(|(A)|p) ≤ CBDG
p E


∑

n≥1

(ξ̃j
n)2
(∫ t

s
W i

s,u cos
( u√

λn

)
du

)2



p
2

≤ CBDG
p


∑

n≥1

‖ξ̃j
n‖2

p

∥∥∥∥
∫ t

s
W i

s,u cos
( u√

λn

)
du

∥∥∥∥
2

p




p
2

where ξ̃n = ξn − ξ̂Nn
n and N1, . . . , Nn, . . . denote the optimal bit allo-

cation of an optimal quadratic product quantization at level N ′ (keep
in mind that Nk = 1, k > L

B
(N ′) and N1 · · ·NL

B
(N ′) ≤ N ′ (B scalar

Brownian motion). Now an elementary integration by parts yields

∫ t

s
W i

s,u cos
( u√

λn

)
du =

√
λn

∫ t

s

(
sin
( t√

λn

)
− sin

( u√
λn

))
dW i

u

so that, for every ρ ∈ (0, 1
2), one checks that, owing to the BDG In-

equality,
∥∥∥∥
∫ t

s
W i

s,u cos
( u√

λn

)
du

∥∥∥∥
p

≤ CBDG
p Cp,ρλ

1−ρ
2

n |t − s| 12+ρ.

Finally, for every ε∈ (0, 3),

‖(A)‖p ≤ Cp,T,ρ,ε


∑

n≥1

λ1−ρ
n ‖ξ̃n‖2

p




1
2

|t − s| 12+ρ.

One shows likewise the same inequality for (B) once noted that

∫ t

s
Ŵ i,N

s,u cos
( u√

λn

)
du = E

(∫ t

s
W i

s,u cos
( u√

λn

)
du | FcW i,N

T

)

which implies
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∥∥∥∥
∫ t

s
Ŵ i,N

s,u cos
( u√

λn

)
du

∥∥∥∥
p

≤
∥∥∥∥
∫ t

s
W i

s,u cos
( u√

λn

)
du

∥∥∥∥
p

.

Consequently, for every ε∈ (0, 3),

‖W̃2,ij,N
s,t ‖p ≤ Cp,ρ,T


∑

n≥1

λ1−ρ
n ‖ξ̃n‖2

p




1
2

|t − s| 12+ρ

≤ Cp,T,ρ,d,ε

(
log N

)−( 1
2
−ρ)∧ 3−ε

2p |t − s| 12+ρ. (40)

If i = j ≥ 1, then

W̃2,ii,N
s,t =

1

2

((
W i

s,t

)−(
Ŵ i,N

s,t )2
)

so that, using again Hölder Inequality,

‖W̃2,ii,N
s,t ‖p =

1

2
‖W i

s,t − Ŵ i,N
s,t ‖

p+δ)
‖W i

s,t − Ŵ i,N
s,t ‖

p(1+
p
δ
)

and one gets the same bounds as in the case i 6= j.

If i or j = 0, one gets similar bounds: we leave the details to the
reader. Finally, one gets that, for every i, j∈ {0, . . . , d},

‖W̃2,N
s,t ‖p ≤ Cp,ρ,T,d,ε,δ

(
log N

)−( 1
2
−ρ)∧ 3−ε

2(p+δ) |t − s| 12+ρ.

By standard computations similar to those detailed in Lemma 2, we
get

∑

m≥0

‖ max
0≤k≤2n+m−1

|W̃2,N

tn+m
k ,tn+m

k+1

|‖p ≤Cp,ρ,T,d,ε,δ

(
log N

)−( 1
2
−ρ)∧ 3−ε

2(p+δ) 2−n( 1
2
+ρ).

Let us pass now to the two other sums. We will focus on (38) since
both behave and can be treated similarly.

max
0≤k≤2n+m−1

0≤k′≤2n+m′−1

|W 2,N

tn+m
k ,tn+m

k+1

−Ŵ 2,N

tn+m
k ,tn+m

k+1

|p|Wtn+m
k′

,tn+m
k′+1

|p

≤
∑

0≤k≤2n+m−1

0≤k′≤2n+m′−1

|W 2,N

tn+m
k ,tn+m

k+1

−Ŵ 2,N

tn+m
k ,tn+m

k+1

|p|Wtn+m
k′

,tn+m
k′+1

|p.

Now for every s, u, t∈ [0, T ], s ≤ u ≤ t, it follows from Hölder Inequality
that
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‖ |Ws,u − Ŵ N
s,u| |Wu,t|‖p ≤ ‖Ws,u − Ŵ N

s,u‖p+δ
‖Wu,t‖p(1+p/δ)

≤ Cp,δ‖Ws,u − Ŵ N
s,u‖p+δ

|t − u| 12 .

Using Inequality (33) from Lemma 3, we get for every p > 2, every
ρ∈ (0, 1

2), every ε∈ (0, 3), and every s, t∈ [0, T ], s ≤ t,
∥∥∥W i

s,t − Ŵ i,N
s,t

∥∥∥
p

≤ Cρ,p,T,d,ε|t − s|ρ(log N)
−( 1

2
−ρ)∧( 3−ε

2p
)
.

Now,

E max
0≤k≤2n+m−1

0≤k′≤2n+m′−1

|W 2,N

tn+m
k ,tn+m

k+1

− Ŵ 2,N

tn+m
k ,tn+m

k+1

|p|Wtn+m
k′

,tn+m
k′+1

|p

≤
(
Cρ,p,T,d,δ,ε(log N)

−( 1
2
−ρ)∧( 3−ε

2(p+δ)
)
)p

2(n+m)(1−ρp)2(n+m′)(1− p
2
)

and we use that ρ > 1
p and p > 2 to show that

∑

m,m′≥0

max
0≤k≤2n+m−1

0≤k′≤2n+m′−1

‖|W 2,N

tn+m
k ,tn+m

k+1

− Ŵ 2,N

tn+m
k ,tn+m

k+1

|p|Wtn+m
k′

,tn+m
k′+1

|‖p

≤ Cρ,p,T,d,δ,ε(log N)
−( 1

2
−ρ)∧ 3−ε

2(p+δ) 2n( 2
p
−( 1

2
+ρ)).

Finally, we get

E
(
Z̃

(2),N

θ̃′

)p
≤ Cρ,p,T,d,ε,δ

(
log N

)−p( 1
2
−ρ)∧ 3−ε

2(p+δ)

as soon as θ̃′∈ (0, θ̃) with θ̃ = p(ρ+ 1
2)− 2. Now, it follows by standard

arguments that

sup
s,t∈[0,T ]

|W̃2,N
s,t | ≤ Z̃

(2),N

θ̃′
|t − s|

θ̃′

p

so that, finally
∥∥∥∥∥∥

sup
s,t∈[0,T ]

|W̃2,N
s,t |

|t − s|
θ̃′

p

∥∥∥∥∥∥
p

≤ Cρ,p,T,d,ε,δ

(
log N

)−( 1
2
−ρ)∧ 3−ε

2(p+δ) . ♦

Now, we are in position to prove the main result of this section.

Proof of Theorem 5. (a) Given Theorem 4, this amounts to proving

that ‖W2 − Ŵ2,N‖ q
2
,Hol converges to 0 in every Lp(P). This easily

follows from Proposition 3(a)-(b).
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(b) We inspect successively four cases to maximize min(1 − ρ, 3
2p) in ρ

when it is possible.

� q ∈ (2, 4) and p < 7q
2(q−2) . Let p′ be defined by 1

p′ = 2(q−2)
7q + α

2

with α > 0 small enough so that p′ > p and 1
p′ + 1

q < 1
2 . Then set

ρ′ = 2
q + 2

p′ − 1
2 + α

2 (note that ρ′ > 1
p′ ). One checks that 1

2 − ρ′ =

1 − 2( 1
p′ + 1

q ) = 3
7(1 − 2

q ) − α ∈ (0, 3−ε
2(p′+δ) ∧ 1

2 ) at least for any small

enough α, δ = δ(α, q) > 0 and ε = ε(α, q) > 0. Now, Proposition 3(c)

applied with θ̃′ = 2p′

q < p′(ρ′ + 1
2 )− 2 yields the announced asymptotic

rate for
∥∥∥‖W2 − Ŵ2,N‖ q

2
,Hol

∥∥∥
p

, p < p′, since Lp(P)-norms are non-

decreasing in p.

� q∈ (2, 4) and p ≥ 7q
2(q−2) . One sets the same specifications as above

for ρ but with p′ = p. Then 1/2 − ρ > 3
2p and choose ε = ε(q, α) > 0

and δ = δ(q, α) > 0 small enough so that 3−ε
2(p+δ) ≤ 3

2p + α.

� q ∈ [4, 20/3). Then 7q
2(q−2) < 2q

q−4 and one checks that the cases

p∈ (2, 7q
2(q−2)) and p∈ [ 7q

2(q−2) ,
2q

q−4) can be solved as above. If p ≥ 2q
q−4

(hence ≥ 5), no optimization in ρ is possible i.e. any admissible ρ
satisfies 1

2 − ρ > 3
2p .

� q≥ 20/3 i.e. 7q
2(q−2) > 2q

q−4 . If p < 2q
q−4 , set p′ such that 1

p′ = q−4
2q +α′/2,

α′ > 0 small enough and ρ′ = 2
q + 2

p′ − 1
2 + α

2 . Doing as above yields

min(1 − ρ, 3
2p) = 2

q + α for an arbitrary small α > 0. Note that this

quantity is greater than 3
7 (1 − 2

q ) + α (so in that case our exponent is

not optimal). If p ≥ 2q
q−4 , we proceed to no optimization in ρ.

(c) This is a consequence of Borel-Cantelli’s Lemma by considering
p > 7q

q−2 . ♦

Now we conclude by proving Theorem 2.

Proof of Theorem 2. First we check using Proposition 3 that

ρq(Ŵ
N , 0) and ρq(W, 0) are a.s. finite since they are integrable. Now

we may apply Theorem 1 which yields the announced result. ♦
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26. Lyons T., Caruana M.J., Lévy T. (2007). Differential equations
driven by rough paths. Lect. Notes in Math. 1908. Notes from T. Lyons’s
course at École d’été de Saint-Flour (2004).

27. Pagès G., Printems J. (2005). Functional quantization for numerics
with an application to option pricing, Monte Carlo Methods & Applica-
tions, 11(4): 407–446.

28. Pagès G., Printems J. (2005). Website devoted to vector and func-
tional optimal quantization: www.quantize.maths-fi.com.

29. Revuz D., Yor M. (1999). Continuous martingales and Brownian mo-
tion. Third edition. Grundlehren der Mathematischen Wissenschaften
[Fundamental Principles of Mathematical Sciences], 293, Springer-
Verlag, Berlin, 602 p.

Appendix: Functional conditional expectation

Let (Yt)t∈[0,T ] be a bi-measurable process defined on a probability space
(Ω,A, P) such that ∫ T

0

E(Y 2
t )dt < +∞.

One can consider Y as a random variable Y : (Ω,A, P) → L2
T

:= L2([0, T ], dt)
and more precisely as an element of the Hilbert space

L2
L2

T

(Ω,A, P) :=
{
Y : (Ω,A, P) → L2

T
, E |Y |2L2

T

< +∞
}



Convergence of multi-dimensional quantized SDE’s 43

where |f |2
L2

T

=
∫ T

0
f2(t)dt. For the sake of simplicity, one denotes ‖Y ‖2 :=

√
E |Y |2

L2
T

. If B denotes a sub-σ-field of A (containing all P-negligible sets of

A) then L2
L2

T

(Ω,B, P) is a closed sub-space of L2
L2

T

(Ω,A, P) and one can define

the functional conditional expectation of Y by

E(Y | B) := Proj⊥L2

L2
T

(Ω,B,P)(Y ).

Functional conditional expectation can be extended to bi-measurable pro-
cesses Y such that ‖Y ‖1 := E |Y |L1

T

< +∞ following the approach used

for Rd-valued random vectors. Then, E(Y | B) is characterized by: for every
B([0, T ])⊗ B-bi-measurable process Z = (Zt)t∈[0,T ], bounded by 1,

E

∫ T

0

Zt Yt dt = E

∫ T

0

Zt E(Y | B)t dt.

In particular, owing to the Fubini theorem, this implies that as soon as the
process (E(Yt | B))t∈[0,T ] has a B([0, T ]) ⊗ B bi-measurable version, the func-
tional conditional expectation could be defined by setting

E(Y | B)t(ω) = E(Yt | B)(ω), (ω, t)∈ Ω × [0, T ].

Examples: (a) Let B := σ(NA, Bi, i∈ I) where (Bi)i∈I is a finite measurable
partition of Ω such that P(Bi) > 0, i∈ I.

(b) Let Y := (Wt)t∈[0,T ] a standard Brownian motion in Rd and let B :=
σ(Wt1 , . . . , Wtn

) where 0 = t0 < t1 < . . . < tn = T . Then

∀ t ∈ [tk, tk+1), E(W | B)t = Wtk
+

t − tk
tk+1 − tk

(Wtk+1
− Wtk

).


