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Abstract

We present here the quantization method which is well-adapted for the pricing
and hedging of American options on a basket of assets. Its purpose is to compute
a large number of conditional expectations by projection of the diffusion on optimal
grid designed to minimize the (square mean) projection error ([24]). An algorithm
to compute such grids is described. We provide results concerning the orders of the
approximation with respect to the regularity of the payoff function and the global size
of the grids. Numerical tests are performed in dimensions 2, 4, 6, 10 with American
style exchange options. They show that theoretical orders are probably pessimistic.
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1 Introduction and reference model

The aim of this paper is to present, to study and to test a probabilistic method for pricing
and hedging American style options on multidimensional baskets of traded assets. The
asset dynamics follow a d-dimensional diffusion model between time 0 and a maturity
time T . We especially focus a classical extension of the Black & Scholes model: the local
volatility model. Nevertheless, a large part of the algorithmic aspects of this paper can be
applied to more general models.

Pricing an American option in a continuous time Markov process (St)t∈[0,T ] consists
in solving the continuous time optimal stopping problem related to an obstacle process.
In this paper we are interested in “Markovian” obstacles of the form ht = h(t, St) which
are the most commonly considered in financial markets. Roughly speaking, there are two
types of numerical methods for this purpose:

– First, some purely deterministic approaches coming from Numerical Analysis: the
solution of the optimal stopping problem admits a representation v(t, St) where v satisfies a
parabolic variational inequality. So, the various discretizing techniques like finite difference
or finite element methods yield an approximation of the function v at discrete points of a
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†Labo. de Probabilités et Modèles aléatoires, CNRS UMR 7599, Université Paris 6, case 188, 4, pl.
Jussieu, F-75252 Paris Cedex 5. gpa@ccr.jussieu.fr
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time-space grid (see e.g. [33] for an application to a vanilla put option or [8] for a more
comprehensive study).

– Secondly, some probabilistic methods based on the dynamic programming formula
or on the approximation of the (lowest) optimal stopping time. In 1-dimension, the most
popular approach to American option pricing and hedging remains the implementation of
the dynamic programming formula on a binomial tree, originally initiated by Cox-Ross
& Rubinstein as an elementary alternative to continuous time Black & Scholes model.
However, let us mention the pioneering work by Kushner in 1977 (see [28] and also [29])
in which Markov chain approximation was first introduced, including its links with the
finite difference method. This took place before the massive development of Mathematical
Finance. Concerning the consistency of time discretization, see [34].

These methods are quite efficient to handle vanilla American options on a single asset
but they quickly become intractable as the number of underlying assets increases. Usu-
ally, numerical methods become inefficient because the space grids are built regardless of
the distributions of the asset prices. The same problem occurs for finite state Markov
chain approximation “à la Kushner”. Concerning the extension from binomial to multi-
nomial trees, is seems difficult to design some trees that are both compatible with the
dimension/correlation constraints and the probabilistic structure of the dynamics.

More recently, the problem gave birth to an extensive literature in order to overcome
the dimensionality problem. All of them finally lead to some finite state dynamic program-
ming algorithm either in its usual form or based on the backward dynamic approximation
of the (lowest) optimal stopping time. In Barraquant & Martineau [7], a sub-optimal
1-dimensional problem is solved: everything is designed as though the obstacle process
itself had the Markov property. In [36], the algorithm devised by Longstaff & Schwartz
is based on conditional expectation approximation by regression on a finite sub-family
(ϕi(St))i∈I of a basis (ϕk(St))k≥1 of L2(σ(St),P). The Monte Carlo rate of convergence
of this method is deeply analyzed by Clément et al. in [16]. In [41], Tsitsiklis & Van Roy
use a similar idea but for a modified Markov transition. In [11], Braodie & Glasserman
generate some random grids at each time step and compute some companion weights using
some statistical ideas based on the importance sampling theorem.

In [21] and [22] Fournié et al. initiated a Monte Carlo approach based on Malliavin
calculus to compute conditional expectations and their derivatives. This leads to a purely
probabilistic method. In [35], Lions and Régnier extend this approach to American option
pricing (and Greek computation). The crucial step of this method is the variance reduction
by localization. Optimal localization is investigated in [27] and [9].

In this paper, we develop a probabilistic method based on grids like in the original finite
state Markov chain approximation method (originally described in [5]). First, we discretize
the asset price process at times tk := kT/n, k = 0, . . . , n (if necessary, we introduce the
Euler scheme of the price diffusion process, still denoted by Stk for convenience throughout
the introduction). The key point is the following: rather than settling these grids a priori,
we will use our ability to simulate large samples of (Stk)0≤k≤n to produce at each time tk
a grid Γ∗k of size Nk which is optimally fitted to Stk among all grids with size Nk in the
following sense: the closest neighbor rule projection q

Γ∗
k
(Stk) of Stk onto the grid Γ∗k is the

best least square approximation of Stk among all random vectors Z such that |Z(Ω)| ≤ Nk.
Namely

‖Stk − q
Γ∗

k
(Stk)‖2 = min

{
‖Stk − Z‖2 , Z : Ω → Rd, |Z(Ω)| ≤ Nk

}
.

In that sense we will produce and then use at each time step the best possible grid of size
Nk to approximate the d-dimensional random vector Stk . For historical reasons coming
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from Information Theory, both the function q
Γ∗

k
and the set q

Γ∗
k
(Ω) are often called optimal

quantizer of Stk . The resulting error bound ‖Stk−q
Γ∗

k
(Stk)‖2 is called the lowest (quadratic

mean) quantization error. It has been extensively investigated in Signal Processing and
Information Theory for more than 50 years (see [25] or more recently [24]). Thus, one

knows that it goes to 0 at a O(N
− 1

d
k ) rate as Nk →∞.

Except in some specific 1-dimensional cases of little numerical interest, no closed form
is available neither for the optimal grid Γ∗k, nor for the induced lowest mean quantization
error. In fact little is known on the geometric structure of these grids in higher dimension.
However, starting from the integral representation (valid for any grid Γ)

‖Stk − qΓ(Stk)‖2
2

= E
(

min
xi∈Γ

|Stk − xi|2
)

and using its regularity properties as an almost everywhere differentiable (symmetric)
function of Γ, one may implement a stochastic gradient algorithm that converges to some
(locally) optimal grid. Furthermore, the algorithm yields as by-products the distribution of
q
Γ∗

k
(Stk), i.e. the weights P(Stk =xk,∗

i ), xk,∗
i ∈ Γ∗k and the induced quantization error. Both

are involved in the American option pricing algorithm (see Section 2.2). Thus, Figure 1
illustrates on the bivariate normal distribution how an optimal grid gets concentrated
on heavily weighted areas (this grid was obtained by the CLV Q algorithm described in
Section 2.4).

The paper is organized as follows. Section 2 of the paper is devoted to the description of
the quantization tree algorithm for pricing American options and to its theoretical rate of
convergence. Then, the tree optimization, including the algorithmic aspects, is developed.
This section is partially adapted from a general discretization method devised for Reflected
Backward Stochastic Differential Equations (RBSDE) in [3].

Time discretization (Section 2.1) amounts to approximating a continuously exercis-
able American option by its Bermuda counterpart to be exercised only at discrete times
tk, k = 0, . . . , n. The theoretical premium of the Bermuda option satisfies a backward
dynamic programming formula. The quantization tree algorithm is defined in Section 2.2:
it simply consists in plugging the optimal quantizer Ŝtk := q

Γ∗
k
(Stk) of Stk in this formula.

Some weights appear that are obtained by the stochastic grid optimization procedure
mentioned above. In Section 2.3, the rate of convergence of this algorithm is derived for
Lipschitz continuous payoffs as a function of the time discretization step T/n and of the
Lp-mean quantization errors ‖Stk−q

Γ∗
k
(Stk)‖p , k = 1, . . . n. Then a short background on

optimal quantization is provided in Section 2.4. In Section 2.5, the grid optimization of the
quantization tree is addressed, using a stochastic approximation recursive procedure. The
last subsection proposes an efficient (analytic) method to design a priori the size Nk of the
grid at every time tk is proposed, given that N := N0+N1+· · ·+Nn elementary quantizers
are available. In that case, we obtain some error bounds of the form C(n−1/2+n(N/n)−

1
d ).

When the payoff is semi-convex the same holds true with n−1 instead of n−1/2.
In Section 3, we design an approximating quantized hedging strategy following some

ideas by Föllmer & Sondermann on incomplete markets. We are in a position to estimate
some bounds for the induced hedging default, called local residual risks of the quantization
tree. This is the aim of Section 4. To this end, we combine some methods borrowed from
RBSDE Theory, analytical techniques for p.d.e. and quantization theory. We obtain
different kinds of rates of convergence for the hedging strategy (far from and close to the
maturity).
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Section 5 is devoted to the experimental validation of the method. We present extensive
numerical results which tend to show that when the grids are optimal (in the quadratic
quantization sense), the spatial order of convergence is better than that obtained with
usual grid methods. The tests are carried out using multi-dimensional American exchange
options on (geometric) index in a standard d-dimensional decorrelated Black & Scholes
model. This rate, actually better than forecast by theory, compensates for the draw-
back of an “irregular” approximation (see below). Two settings have been selected for
simulation: one “in-the-money” and one “out-of-the-money”, both in several dimensions
d = 2, 4, 6, 10. In the worst case (d=10) case, the computed premia remain within 3, 5%
of the reference price.

The main features of the quantization approach. Before going into technicali-
ties, one may mention an obvious methodological difference between the quantization tree
algorithm and the regression method [36]. The Longstaff-Schwartz approach makes the
choice of a smooth but global approximation whereas we privilege an irregular (piecewise
constant) but local approximation. Among the expected advantages of the local feature
of quantization approximation, a prominent one is that it may lead to higher order ap-
proximations of the price, involving the spatial derivatives i.e. the hedging (see e.g. [6]
for a first approach in that direction). A second asset, probably the most important for
operating applications, is that, once the asset price process has been appropriately quan-
tized, it can almost instantly price all possible American (vanilla) payoffs without any
further Monte Carlo simulations. Finally, when the diffusion process (St) is a function of
the Brownian motion at time t i.e. St = ϕ(t, Bt) like in the Black & Scholes model, the
quantization tree algorithm may become completely parameter free: it suffices to consider
a quantization of the Brownian motion itself which consists of some optimal quantization
grids of multi-variate normal distributions with the appropriate sizes. Such optimal grids
can be computed systematically in a very accurate way and then kept off line (see [39]).
Quadratic optimal N -quantization of the N (0; Id) distributions has been carried out sys-
tematically for various sizes N ∈ {1, . . . , 400} and dimensions d∈ {1, . . . , 10}. Some files
of these optimal grids (including their weights) can be downloaded at the URLs:

• www.proba.jussieu.fr/pageperso/pages.html or
• www.univ-paris12.fr/www/labos/cmup/homepages/printems.

Finally, note that this method of quantization has been implemented in the software
premia (see http://www-rocq.inria.fr/mathfi/Premia/index.html).

The reference model. We consider a market on which are traded d risky assets
S1, . . . , Sd and a deterministic riskless asset S0

t := ert, r ∈ R between time t := 0 and the
maturity time T > 0. One typical model for the price process S := (S1, . . . , Sd) of the
risky assets is the following diffusion model

dSi
t = Si

t(r dt +
∑

1≤j≤q

σij(e−rtSt) dW j
t ), Si

0 := si
0 > 0, 1 ≤ i ≤ d, (1.1)

where W := (W 1, . . . , W q) is a standard q-dimensional Brownian Motion defined on a
probability space (Ω,A,P) and

σ : Rd −→M(d× q) := Rd⊗q is bounded and Lipschitz continuous. (1.2)

The filtration of interest will be the natural (completed) filtration F := (FS
t )t∈[0,T ] of S

(which coincides with that of W as soon as σσ∗(ξ) > 0 for every ξ∈ Rd). For notational
convenience, we introduce

c(ξ) := Diag(ξ)σ(ξ), ξ := (ξ1, . . . , ξd)∈ Rd.
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where Diag(ξ) denotes the diagonal matrix with diagonal entry ξi at row i. The functions
c(ξ) and the drift b(ξ) := r ξ are Lipschitz continuous so that a unique strong solution
exists for (1.1) on (Ω,A,P). Furthermore, it is classical background that, for every p ≥ 1,
there exists a constant Cp,T > 0 such that

Es0( sup
t∈[0,T ]

|St|p) < Cp,T (1 + |s0|p).

The discounted price process S̃t := e−rtSt is then a positive P-martingale satisfying

dS̃t = c(S̃t)dWt, S̃0 := s0, (1.3)

Here P is the so-called risk neutral probability in Mathematical Finance terminology. As
long as q 6= d, the usual completeness of the market necessarily fails. However, from
numerical point of view, this has no influence on the implementation of the quantization
method to compute the price of the derivatives: we just compute a P-price. When coming
to the problem of hedging these derivatives, then the completeness assumption becomes
crucial and will lead us to assume that q = d and that the diffusion coefficient c(x) is
invertible everywhere on (R∗+)d.

When q = d and σ(x) ≡ σ∈M(d×d), (1.1) is the usual d-dimensional Black & Scholes
model: the risky assets are geometric Brownian motions given by

Si
t = si

0 exp


(r − 1

2
|σi.|2)t +

∑

1≤j≤d

σijW
j
t


, 1 ≤ i ≤ d.

An American option related to a payoff process (ht)t∈[0,T ] is a contract that gives the
right to receive once and only once the payoff ht at some time t∈ [0, T ] where (ht)t∈[0,T ]

is a F-adapted nonnegative process. In this paper we will always consider the sub-class
of payoffs ht that only depends on (t, St) i.e. satisfying

ht := h(t, St), t ∈ [0, T ] where h : [0, T ] −→ R+ is a Lipschitz continuous. (1.4)

Such payoffs are sometimes called vanilla. Under Assumptions (1.1) and (1.4), one has

E( sup
t∈[0,T ]

|ht|p) < +∞ for every p ≥ 1.

One shows – in a complete market – that the fair price Vt at time t for this contract is

Vt := ertess sup
{
E(e−rτhτ | Ft), τ ∈ Tt

}
(1.5)

where Tt := {τ : Ω → [t, T ], F-stopping time}. This simply means that the discounted
price Ṽt := e−rtVt of the option is the Snell envelope of the discounted American payoff

h̃t := h̃(t, S̃t) with h̃(t, x) := e−rth(t, ertx). (1.6)

This result is based on a hedging argument on which we will come back further on. Note
that sup

t∈[0,T ]
|Vt| ≤ sup

t∈[0,T ]
|ht|∈ Lp, p ≥ 1.

One shows (see [8]) using the Markov property of the diffusion process (St)t∈[0,T ] that
Vt := ν(t, St) where ν solves the variational inequality

max
(

∂ν

∂t
+ Lr,σν, ν − h

)
= 0, ν(T, .) = h(T, .). (1.7)
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where Lr,σ denotes the infinitesimal generator of the diffusion (1.1).
Then, it is clear that the approximation problem for Vt appears as a special case

of the approximate computation of the Snell envelope of a d-dimensional diffusion with
Lipschitz coefficients. To solve this problem in 1-dimension, many methods are available.
These methods can be classified in two families: the probabilistic ones based on a weak
approximation of the diffusion process (St) by purely discrete dynamics (e.g. binomial
trees, [33]) and the analytic ones based on numerical methods for solving the variational
inequality (1.7) (e.g. finite difference or finite element methods). When the dimension d
of the market increases, these methods become inefficient.

At this stage, one may assume without loss of generality that the interest rate r in (1.1)
is 0: this amounts to assuming that we are in a “discounted world” with S̃ given by (1.3)
and h̃ given by (1.6) instead of (St) and h respectively.

Notations: • C∞b (Rd) denotes the set of functions infinitely differentiable with bounded
differentials (so that they have at most linear growth).
• The letters C and K denote positive real constants that may vary from line to line.
• | . | will denote the Euclidean norm and “ . ” the inner product on Rd = R1⊗d. ‖M‖ :=
sup|x|≤1 |Mx| will denote the operator norm of the matrix M ∈ Rd⊗q (d rows, q columns)
and M∗ its transpose. In particular x.y = x∗ y.

2 Pricing an American option using a quantization tree

In this section, the specificity of the martingale diffusion dynamics proposed for the risky
assets in (1.3) (with r = 0) has little influence on the results, so it is costless to consider
a general drifted Brownian diffusion

St = S0 +
∫ t

0
b(Ss) ds +

∫ t

0
c(Ss)dWs, (2.1)

where b : Rd → Rd and c : Rd → M(d × q) are Lipschitz continuous vector fields and
(Wt)t∈[0,T ] is q-dimensional Brownian motion.

2.1 Time discretization: the Bermuda options

The exact simulation of a diffusion at time t is usually out of reach (e.g. when σ is not
constant in the specified model (1.1)). So one uses a (Markovian) discretization scheme,
easy to simulate, e.g. the Euler scheme: set tk = kT/n and

Stk+1
= Stk + b(Stk)

T

n
+ c(Stk).(Wtk −Wtk−1

), S0 = s0. (2.2)

Then, the Snell envelope to be approximated by quantization is that of the Euler scheme.

Sometimes, the diffusion can be simulated simply, essentially because it appears as
a closed form St := ϕ(t,Wt). This is the case of the regular multi-dimensional Black &
Scholes model (set σ(x) := σ in (1.1)). Then, it is possible to consider directly the the
Snell envelope of the homogeneous Markov chain (Stk)0≤k≤n for quantization purpose.

This time discretization corresponds, in the derivative terminology, to approximating
the original continuous time American option by a Bermuda option, either on S or on
S itself. By Bermuda option, one means that the set of possible exercise times is finite.
Error bounds are available at these exercise times tk (see Theorem 1 below).
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We want to quantize the Snell envelope of (Stk) or (Stk) or of any family of homoge-
neous discrete time Ftk -Markov chains (X(n)

k )0≤k≤n whose transitions, denoted P (n)(x, dy),
preserves Lipschitz continuity in the following sense: for every Lipschitz continuous func-
tion f : Rd → R

[P (n)f ]Lip ≤ (1 + Cb,σ,T T/n)[f ]Lip where [f ]Lip := sup
x6=y

|f(x)− f(y)|
|x− y| (2.3)

(see, e.g., [3] for a proof). In fact this general discrete time markovian setting is the natural
framework for the method. To alleviate notations, we drop the dependency in n and keep
the notation (Xk)0≤k≤n. The (Ftk)-Snell envelope of h(tk, Xk), denoted by (Vk)0≤k≤n, is
defined by:

Vk := ess sup {E (h(θ, Xθ) | Ftk) , θ∈ Θk}
where Θk denotes the set of {tk, . . . , tn}-valued (Ft`)-stopping times. It satisfies the so-
called backward dynamic programming formula (see [37]):

{
Vn := h(tn, Xn),

Vk := max (h(tk, Xk),E(Vk+1 | Ftk)) , 0 ≤ k ≤ n− 1.
(2.4)

One derives using the Markov property a dynamic programming formula in distribution:
Vk = vk(Xk), k∈ {0, . . . , n}, where the functions vk are recursively defined by

{
vn := h(tn, . ),

vk := max
(
h(tk, .), P (n)(vk+1)

)
, 0 ≤ k ≤ n− 1.

(2.5)

This formula remains intractable for numerical computation since they require to com-
pute at each time step a conditional expectation.

Theorem 1 below gives some Lp-error bounds that hold for Vtk − Vtk in our original
diffusion framework. First we need to introduce some definition about the regularity of h.

Definition 1 A function h : [0, T ]×Rd −→ R is semi-convex if

∀ ξ, ξ′ ∈ Rd, ∀ t∈ R+, h(t, ξ′)− h(t, ξ) ≥ (δh(t, ξ)|ξ′ − ξ)− ρ|ξ′ − ξ|2 (2.6)

where δh is a bounded function on [0, T ]×Rd and ρ ≥ 0.

Remarks: Note that (2.6) appears as a convex assumption relaxed by −ρ|ξ′−ξ|2. In most
situations, is used in the reverse sense i.e. h(t, ξ) − h(t, ξ′) ≤ (δh(t, ξ)|ξ − ξ′) + ρ|ξ − ξ′|2.
The semi-convexity assumption is fulfilled by a wide class of functions:

– If h(t, .) is C1 for every t∈ [0, T ] and ∂h
∂ξ (t, ξ) is bounded, ρ-Lipschitz in ξ, uniformly

in t then h is semi-convex (with δh(t, ξ) := ∂h
∂x(t, ξ)).

– If h(t, .) is convex for every t ∈ [0, T ] with a derivative δh(t, .) (in the distribution
sense) which is bounded in (t, ξ), then h is semi-convex (with ρ = 0). Thus, it embodies
most usual payoff functions used for pricing vanilla and exotic American style options like
h(t, ξ) := e−rt(K − ϕ(ertξ))+ with ϕ Lipschitz continuous (on sets {ϕ ≤ L}, L > 0).

The notion of semi-convex function seems to appear in [14] for pricing one-dimensional
American options. See also [32] for recent developments in a similar setting.
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Theorem 1 Let h : [0, T ] × Rd → R be a Lipschitz continuous function and let p ∈
[1,+∞). Let Xk = Stk or Stk and let (Vk)0≤k≤n denote the Snell envelope of (h(tk, Xk))0≤k≤n.
(a) There is some positive real constant C depending on [b]Lip, [c]Lip, [h]Lip and p such that

∀n≥ 1, ∀ k∈ {0, . . . , n}, ‖Vtk − Vk‖p ≤
eCT (1 + |s0|)√

n
. (2.7)

(b) If furthermore Xk = Stk , k = 0, . . . , n and if the obstacle h is semi-convex, then

∀n≥ 1, ∀ k∈ {0, . . . , n}, ‖Vtk − Vk‖p ≤
eCT (1 + |s0|)

n
(2.8)

2.2 Spatial discretization: the quantization tree

The starting point of the method is to discretize the random variables Xk by some σ(Xk)-
random variables X̂k taking finitely many values in Rd. Such a random vector X̂k is
called a quantization of Xk. Equivalently, one may define a quantization of Xk by setting
X̂k = qk(Xk) where qk : Rd → Rd is a Borel “quantizing” function such that |qk(Rd)| =
|Xk(Ω)| = Nk < +∞. The elements of the set Xk(Ω) are called elementary quantizers.
Let N = N0 + N1 + · · · + Nn denote the total number of elementary quantizers used to
quantize the whole Markov chain (Xk)0≤k≤n.

We aim to approximate the dynamic programming formula (2.4) by a similar dynamic
programming formula involving the sequence (X̂k)0≤k≤n.

2.2.1 Quantization tree and quantized pseudo-Snell envelope

We assume in that section that for every k ∈ {0, 1, . . . , n}, we have access to a se-
quence of quantizations X̂k = qk(Xk), k = 0, . . . , n of the Markov chain (Xk)k. We
denote by {xk

1, · · · , xk
Nk
} = qk(Rd) the grid of Nk points used to quantize Xk and by

xk = (xk
1, . . . , x

k
Nk

) the induced Nk-tuple(1). The questions related to the optimal choice
of xk and qk will be addressed in Section 2.4 below. (Note that in our original setting
X0 = s0, so that X̂0 = s0 is the best possible Lp-mean quantization of X0 and N0 = 1).

The quantized dynamic programming formula below is devised by analogy with the
original one (2.4): one simply replaces Xk by its quantized random vector X̂k





V̂n := h(tn, X̂n),

V̂k := max
(
h(tk, X̂k),E(V̂k+1 | X̂k)

)
, 0 ≤ k ≤ n− 1.

(2.9)

Notation: for the sake of simplicity, from now on, we will denote Êk( . ) := E( . | X̂k).

The main reason for considering conditional expectation with respect to X̂k is that
the the sequence (X̂k)k∈N is not Markovian. On the other hand, even if the Nk-tuple xk

has been set up a priori for every Xk, this does not make the numerical processing of
this algorithm possible. As a matter of fact, one needs to know the joint distributions of
(X̂k, X̂k+1), k = 0, . . . , n − 1. This is enlightened by the proposition below whose easy
proof is left to the reader.

1From now on, for convenience, we will give the priority to the N -tuple notation.
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Proposition 1 (Quantization tree algorithm) For every k∈ {0, . . . , n}, let xk := (xk
1, . . . , x

k
Nk

),
qk : Rd → {xk

1, . . . , x
k
Nk
} and X̂k = qk(Xk) be a quantization of Xk. Set, for every

k∈ {0, . . . , n} and every i∈ {1, . . . , Nk},
pk

i := P(X̂k = xk
i ) = P(Xk∈ Ci(xk)), (2.10)

and, for every k∈ {0, . . . , n− 1}, i∈ {1, . . . , Nk}, j∈ {1, . . . , Nk+1}

πk
ij := P(X̂k+1 = xk+1

j | X̂k = xk
i ) = P

(
Xk+1∈ Cj(xk+1) | Xk∈ Ci(xk)

)

=
pk

ij

pk
i

with pk
ij := P

(
Xk+1∈ Cj(xk+1), Xk∈ Ci(xk)

)
. (2.11)

One defines by a backward induction the function v̂k by

v̂n(xn
i ) := hn(xn

i ), i∈ {1, . . . , Nn}

v̂k(xk
i ) := max


h(tk, xk

i ),
Nk+1∑

j=1

πk
ij v̂k+1(xk+1

j )


, 1 ≤ i ≤ Nk, 0 ≤ k≤, n− 1.(2.12)

Then, V̂k = v̂k(X̂k) satisfies the above dynamic programming (2.9) of the pseudo-Snell
envelope.

Remark: If Xk = Stk or Stk , then X0 = X̂0 = s0 and v̂0(X̂0) = v̂0(s0) is deterministic.
In more general settings one approximates E v0(X0) by

E v̂0(X̂0) =
N0∑

i=1

p0
i v̂(x0

i ).

Implementing the quantization tree algorithm (2.12) on a computer raises two ques-
tions:

– How is it possible to estimate the parameters pk
i and pk

ij involved in (2.12) ?
– Is it possible to handle the complexity of such a tree structured algorithm ?

Parameter estimation (A first Monte Carlo approach): the tractability of the
above algorithm relies on the parameters πk

ij := pk
i /pk

ij . So, the ability to compute them
at a reasonable cost is the key of the method. The most elementary solution is to process
a wide scale Monte Carlo simulation of the Markov chain (Xk)0≤k≤n to estimate the
parameters pk

i and pk
ij as defined by (2.10) and (2.11). An estimate of the (pth power

of the) Lp-mean quantization error ‖Xk − X̂k‖p
p

= Emin1≤i≤N |Xk − xk
i |pp can also be

computed. When (Xk)0≤k≤n is a Euler scheme (or Black & Scholes diffusion) this makes
no problem. More generally, this depends upon the ability to simulate some sample paths
of the chain starting from any x∈ Rd.

We will see further on in paragraph 2.4 how to choose the size and the geometric
location of the Nk-tuples xk in an optimal way.

Complexity of the quantization tree: theory and practice A quick look at
the structure of the algorithm (2.12) shows that going from layer k + 1 down to layer k
needs κ×NkNk+1 elementary computations (κ is the complexity induced by a connection
“i → j”). Hence, the cost of a quantization tree descent is approximately

Complexity = κ× (N0N1 + N1N2 + · · ·+ NkNk+1 + · · ·+ Nn−1Nn).

9



Then an elementary optimization under constraint shows that

κ
N2

n + 1
≤ Complexity ≤ κ

N2

4
.

(Lower bound is for Nk = N/(n+1), upper bound for the unrealistic values Nk = N
2 1{0,1}).

This purely combinatorial lower bound needs to be tuned. In fact, in most examples the
transition of the Markov chain behaves in such a way that, at each layer k, many terms of
the “transition matrix” [πk

ij ] are negligible because xk
i and xk+1

j are remote from each other
in Rd: the Monte Carlo estimates of these coefficients will be 0. Hence, the complexity
of the algorithm is ν × κN rather than lower bound κN2/(n + 1), where ν denotes the
average number of active connections above a regular node i of the tree. Thus, the cost
of such a “descent” is similar to that of a one dimensional binomial tree with

√
ν
2N time

steps (such a tree approximately contains νN points).

2.3 Convergence and rate using Lp-mean quantization error

In this paragraph we provide some a priori Lp-error bounds for ‖Vk − V̂k‖p , k = 0, . . . , n,

based on the Lp-mean quantization errors ‖Xk−X̂k‖p , k = 0, . . . , n, where quantizer X̂k is
a Voronoi quantizer that takes Nk values xk

1, . . . , x
k
Nk

. This error modulus can be obtained
as a by-product of a Monte Carlo simulation of (Xk)0≤k≤n: it only requires to compute,
for every PXk

-distributed simulated random vector, its distance to its closest neighbor in
the set {xk

1, . . . , x
k
Nk
}.

The estimates in Theorem 2 below holds for any homogeneous Markov chain (Xk)0≤k≤n

having a K-Lipschitz transition (P (x, dy))x∈Rd satisfying, for every Lipschitz function g,

[Pg]Lip ≤ K[g]Lip . (2.13)

This is the case of a diffusion and of its the Euler scheme with Lipschitz drift and diffusion
coefficient as mentioned before, see (2.3). Note that K may be lower than 1: this is, e.g.,
the case if Xk is the Euler scheme of an Ornstein-Uhlenbeck process with drift b(x) :=
−ax, a > 0 (and step T/n < 1/a).

Theorem 2 Assume that the transition P (x, dy) of the chain (Xk)0≤k≤n is K-Lipschitz,
that h is Lipschitz continuous in x, uniformly in time and set [h]Lip := max0≤k≤n[h(tk, .)]Lip.
Let (Vk)0≤k≤n and (V̂k)0≤k≤n be like in (2.4) and (2.9) respectively. For every k ∈
{0, . . . , n}, let X̂k denote a quantization of Xk. Then, for every p ≥ 1,

‖Vk − V̂k‖p ≤
n∑

i=k

d
(n)
i ‖Xi − X̂i‖p

with d
(n)
i :=(1 + (2− δp,2)(K ∨ 1)n−i)[h]Lip , 0≤ i≤n−1, d

(n)
n := [h]Lip (δu,v stands for the

Kronecker symbol).

Proof: Step 1: We first show that the functions vk recursively defined by (2.5) are
Lipschitz continuous with

[vk]Lip ≤ (K ∨ 1)n−k[h]Lip . (2.14)

Clearly, [vn]Lip≤ [h]Lip and one concludes by induction, using the inequality

|max(a, b)−max(a′, b′)| ≤ max(|a− a′|, |b− b′|).

10



Step 2: Set Φk := P (vk+1) k = 0, . . . , n− 1, Φn ≡ 0 and hk := h(tk, .), k = 0, . . . , n. The
function Φk satisfies E(vk+1(Xk+1) | Ftk) = E(vk+1(Xk+1) | Xk) = Φk(Xk). One defines
similarly Φ̂k by the equality Êk(v̂k+1(X̂k+1) | X̂k) := Φ̂k(X̂k), k = 0, . . . , n−1 and Φ̂n ≡ 0.
Then

|Vk − V̂k| ≤ |hk(Xk)− hk(X̂k)|+ |Φk(Xk)− Φ̂k(X̂k)|
≤ [h]Lip |Xk − X̂k|+ |Φk(Xk)− Êk(Φk(Xk))|+ |Êk(Φk(Xk))− Φ̂k(X̂k)|.(2.15)

Now |Φk(Xk)− ÊkΦk(Xk)| ≤ |Φk(Xk)− Φk(X̂k)|+ Êk|Φk(Xk)− Φk(X̂k)|

≤ [Φk]Lip

(
|Xk − X̂k|+ Êk|Xk − X̂k|

)
.

Hence, ‖Φk(Xk)− ÊΦk(Xk)‖p ≤ 2[Φk]Lip‖Xk − X̂k‖p .

When p = 2, the very definition of the conditional expectation as a projection in a Hilbert
space implies that one may remove the factor 2 in the inequality.

Now Êk(Φk(Xk))− Φ̂k(X̂k) = Êk (E(vk+1(Xk+1) | Xk))− Êk

(
v̂k+1(X̂k+1)

)

= Êk

(
vk+1(Xk+1)− v̂k+1(X̂k+1)

)

since X̂k is σ(Xk)-measurable. Conditional expectation being a Lp-contraction, it follows

‖Êk(Φk(Xk))− Φ̂k(X̂k)‖p ≤ ‖Vk+1 − V̂k+1‖p .

Finally, it follows from the above inequalities and (2.15) that

‖Vk − V̂k‖p ≤ ([h]Lip + c[Φk]Lip)‖Xk − X̂k‖p + ‖Vk+1 − V̂k+1‖p , k∈ {0, . . . , n− 1}.

On the other hand, ‖Vn − V̂n‖p ≤ [h]Lip‖Xn − X̂n‖p , so that

‖Vk − V̂k‖p ≤
n∑

i=k

([h]Lip + (2− δp,2)[Φi]Lip)‖Xi − X̂i‖p

The definition of Φi and the K-Lipschitz property of P (x, dy) complete the proof since

[Φi]Lip = [P (vi+1)]Lip ≤ K[vi+1]Lip . ♦

2.4 Optimization of the quantization

We begin by a brief introduction to optimal quantization of random vectors (see [24] for
on overview), then we address the problem of optimal quantization of Markov chains.

2.4.1 Optimal quantization of a random vector X

Let X∈ Lp
Rd(Ω,A,P). From a probabilistic viewpoint, optimal Lp-mean quantization (p ≥

1) consists in studying the best Lp-approximation of X by some random vectors X ′ = q(X)
taking at most N values. Minimizing the Lp-mean quantization error ‖X − q(X)‖p can
be decomposed into two successive phases:

11



– Optimization phase 1. A N -tuple x = (x1, . . . , xN ) ∈ (Rd)N being set, find a
quantizer qx : Rd → {x1, . . . , xN } (if any) such that

‖X − qx(X)‖p = inf
{
‖X − q(X)‖p , q : Rd → {x1, . . . , xN }, Borel function

}
.

– Optimization phase 2. Find an N -tuple x∗ ∈ (Rd)N (if any) that achieves the
infimum of ‖X − qx(X)‖p over (Rd)N , i.e.

‖X − qx∗(X)‖p = inf
{
‖X − qx(X)‖p , x∈ (Rd)N

}
.

The solution to the first optimization problem is purely geometric: it is the closest
neighbor projections, denoted qx, induced by the Voronoi tessellations of x as defined
below.

Definition 2 (a) Let x := (x1, · · · , xN )∈ (Rd)N . A Borel partition(2) C1(x), i = 1, . . . , N
of Rd is a Voronoi tessellation of the x if, for every i∈ {1, . . . , N}, Ci(x) satisfies

Ci(x) ⊂ {y∈ Rd | |xi − y| = min
1≤j≤N

|y − xj |}.

(b) The closest neighbor projection or Voronoi quantizer (function) qx induced by the
Voronoi tessellation (Ci(x))1≤i≤n is defined for every ξ∈ Rd, by qx(ξ) =

∑
1≤i≤N xi1Ci(x)(ξ).

(c) The random vector
X̂x = qx(X) =

∑

1≤i≤N

xi1Ci(x)(X)

is called a Voronoi quantization of X. The N -tuple x is often called an N -quantizer.

Notation: From now on, the notation X̂x will always denote a Voronoi quantization of
X. When there is no ambiguity, the exponent x will often be dropped and we will denote
X̂ instead of X̂x.

Note that, the closure and the boundary of the ith cell Ci(x) are the same for any
Voronoi tessellation. This boundary is included into at most N − 1 hyperplanes. If the
distribution PX of X weights no hyperplane – that is PX (H) = 0 for every hyperplane H
of Rd – then all the Voronoi tessellations are PX - equal and all the Voronoi quantizations
X̂x have the same distribution.

The second optimization problem consists in minimizing on (Rd)N the (symmetric)
function x 7→ ‖X − X̂x‖p . First, note that the Lp-mean quantization error satisfies

‖X−X̂x‖p
p
=

N∑

i=1

E
(
1Ci(x)|X−xi|p

)
=E

(
min

1≤i≤N
|X−xi|p

)
=

∫

Rd

min
1≤i≤N

|xi−ξ|pPX (dξ). (2.16)

It follows that the Lp-mean quantization error depends on X through its distribution PX .
The second consequence of (2.16) is an important and attractive feature of the Lp-mean
quantization error compared to other usual error bounds: it is a (Lipschitz) continuous
function of the N -quantizer x := (x1, . . . , xN ).

Hence, as soon as PX has a compact support, x 7→ ‖X − X̂x‖p reaches a minimum at
some Lp-optimal N -quantizer x∗. When PX no longer has a compact support, this is still
true: one shows by induction on N (see [24] or [38]), that

x 7→ ‖X − X̂x‖p reaches an absolute minimum on (Rd)N at some x∗∈ (Rd)N .

2In what follows, we will assume that a partition may contain the empty set: this will happen when
xi = xj for some i 6= j.
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Proposition 2 An Lp-optimal N -quantizer x∗ for X∈ Lp(Ω,P) satisfies

‖X − X̂x∗‖p = min
{
‖X − Z‖p , Z : Ω → Rd, random vector, |Z(Ω)| ≤ N

}
. (2.17)

Proof: Let Z(Ω) = {z1, . . . , zN }. Set z := (z1, . . . , zN ) (with possibly zi = zj). Then

‖X−X̂x∗‖p
p
≤ ‖X−X̂z‖p

p
=

∫

Ω
min

i
|X(ω)−zi|pP(dω) ≤

∫

Ω
min

i
|X(ω)−Z(ω)|pP(dω) =‖X−Z‖p

p
.♦

Moreover, the following simple facts hold true (see [24] or [38] and the references therein):
– If suppPX has an infinite support, any optimal N -quantizer x∗ has pairwise distinct
elements, that is |qx∗(Rd)| = |X̂x∗(Ω)| = N .
– The closed convex hull HX of suppPX contains at least an optimal quantizer (obtained
as the projection of any optimal quantizer on HX ). Furthermore, if suppPX is convex
(i.e. equal to HX ), then the N distinct components of any optimal N -quantizer x∗ all lie

in
◦
HX . This also holds true for HX -valued locally optimal N -quantizers.

– Rate of convergence: The main function of the Lp-mean quantization error
being to be an error bound, it is important to elucidate the behavior of ‖X − X̂x∗‖p as
the size N of the optimal N -quantizer x∗ go to infinity. The first easy fact is that it goes
to 0 as N →∞ i.e.

lim
N

min
x∈(Rd)N

‖X − X̂x‖p = 0.

Indeed, let (zk)k∈N denote an everywhere dense sequence of Rd-valued vectors and set
xN := {z1, . . . , zN }. Then ‖X − X̂x

N ‖p goes to zero by the Lebesgue dominated conver-
gence theorem. Furthermore 0 ≤ minx∈(Rd)N ‖X − X̂x‖p ≤ ‖X − X̂x

N ‖p . ♦

The rate of this convergence turns out to be a much more challenging problem. Its
solution, often referred to as Zador’s Theorem, was completed by several authors (Zador,
see [25], Bucklew & Wise, see [13] and finally Graf & Luschgy see [24]).

Theorem 3 (Asymptotics) Assume that E|X|p+η < +∞ for some η > 0. Then

lim
N

(
N

p
d min

x∈(Rd)N
‖X − X̂x‖p

p

)
= Jp,d

(∫

Rd

ϕ(u)
d

d+p du

)1+ p
d

(2.18)

where PX (du) = ϕ(u) λd(du)+ν(du), ν ⊥ λd (λd Lebesgue measure on Rd). The constant
Jp,d corresponds to the case of the uniform distribution on [0, 1]d.

Little is known about the true value of the constant Jp,d except in dimension 1 where
Jp,1 = 1

2p(p+1) . Some geometric considerations lead to J2,2 = 5
18
√

3
(see [25] or [24]). Never-

theless, some upper and lower bounds were established, based on ball packing techniques
and on the introduction of random quantizers (see e.g. [17] and [24]). It follows that
Jp,d ∼ ( d

2πe)
p/2 as d → +∞ (see [24]).

This theorem says that minx∈(Rd)N ‖X − X̂x‖p = CX,p,dN
− 1

d + o(N− 1
d ): this is in

accordance with the rates obtained with uniform product lattice grids of size N = md

for numerical integration with respect to the uniform distribution over [0, 1]d. (Even in
that very case, no such lattice grid is an optimal quantizer except when d = 1). The
conclusion is that, for any distribution PX , optimal quantization produces for every N the
best matching “N -grid” for PX . Asymptotically, a sequence of optimal quantizers yields
the lowest possible constant CX,p,d, with an obvious numerical interest.
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2.5 How to get optimal quantization using simulation

Optimal quantization of a single random vector: how to get it? In fact the
Lp-mean quantization error function is even smoother than Lipschitz continuous. This is
at the origin of an important a stochastic optimization method based on simulation. First,
we consider for convenience its pth power, denoted Dp

N
, defined for every x = (x1, . . . , xN )∈

(Rd)N by

Dp
N

(x) = ‖X − X̂x‖p
p

= E
(

min
1≤i≤N

|X − xi|p
)

=
∫

Rd

dp
N

(x, ξ)PX (dξ)

where dp
N

(x, ξ) := min
1≤i≤N

|xi − ξ|p.

The letter D refers to the word distortion used in Information Theory. The function
dp

N
(x, ξ) is often called local Lp-distortion.
One shows (see, e.g., [24] or [38]) that, if p > 1, Dp

N
is continuously differentiable at

every x∈ (Rd)N satisfying the admissibility condition

∀ i 6= j, xi 6= xj and PX

(∪N
i=1∂Ci(x)

)
= 0. (2.19)

Then, its gradient ∇Dp
N

(x) is obtained by formal differentiation, that is

∇Dp
N

(x) :=
(
E

∂dp
N

∂xi
(x,X)

)

1≤i≤n

=
(∫

Rd

∂dp
N

∂xi
(x, ξ)PX (dξ)

)

1≤i≤n

where
∂dp

N

∂xi
(x, ξ) := p

xi − ξ

|xi − ξ| |xi − ξ|p−11Ci(x)(ξ), 1 ≤ i ≤ n,

with the convention 0
|0| = 0. The above differentiability result still holds when p = 1 if PX

is continuous i.e. PX ({ξ}) = 0, ξ∈ Rd.
One notes that ∇Dp

N
has an integral representation with respect to the distribution

of X. When the distribution PX is simulatable, this strongly suggests to implement a
stochastic gradient descent derived from this representation to approximate some (local)
minimum of Dp

N
: when d ≥ 2, the implementation of deterministic gradient descent

becomes unrealistic since it would rely on the computation of many integrals with respect
. . . to PX . This stochastic gradient descent is defined as follows: let (ξt)t∈N∗ be a sequence
of i.i.d. PX -distributed random variables and let (γt)t∈N∗ be a sequence of (0, 1)-valued
steps satisfying ∑

t

γt = +∞ and
∑

t

γ2
t < +∞. (2.20)

Set, for every admissible x∈ (Rd)N in the sense of (2.19), and every ξ∈ Rd

∇xdp
N

(x, ξ) :=
(

∂dp
N

∂xi
(x, ξ)

)

1≤i≤N

.

Then, starting from a deterministic initial N -tuple X0 = x0 with N pairwise distinct
components, one defines recursively for every t ≥ 1,

Xt = Xt−1 − γt

p
∇xdp

N
(Xt−1, ξt) (2.21)

(this formula a.s. grants by induction that xt has pairwise distinct components).
From a theoretical viewpoint, the main difficulty is that the assumptions usually made

that ensure the a.s. convergence of such a procedure are not fulfilled by Dp
N

(see, e.g. [18]
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or [30] for an overview on Stochastic approximation). To be more specific, let us stress
that Dp

N
(x1, . . . , xN ) does not go to infinity as max1≤i≤N |xi| goes to infinity and ∇Dp

N
is

clearly not a Lipschitz function. So it is not an appropriate “Lyapunov function”. However
some (weaker) conditional a.s. convergence results in the Kushner & Clark sense have
been obtained in [38] for compactly supported absolutely continuous distributions PX in
the case p = 2. In 1 dimension, regular a.s. convergence holds if furthermore the density
function of PX− is bounded.

The quadratic case p = 2 is the most commonly implemented for applications. It is
known in Information Theory literature as as the Competitive Learning Vector Quantiza-
tion (CLV Q) algorithm.

The synthetic formula (2.21) can be detailed as follows: set Xt := (Xt
1, . . . , X

t
N

),

Competitive phase: select i(t + 1) ∈ argmini|Xt
i − ξt+1| (2.22)

Learning phase:





Xt+1
i(t+1) := Xt

i(t+1) − γt+1
Xt

i(t+1)
−ξt+1

|Xt
i(t+1)

−ξt+1| |Xt
i(t+1) − ξt+1|p−1

∗[.6em]Xt+1
i := Xt

i , i 6= i(t + 1).
(2.23)

Companion parameter procedure: Assume that X ∈ Lp(1+η) for some η∈ (0, 1] and
let (γ̃t)t≥1 be a sequence of (0, 1)-valued steps satisfying

∑
t

γ̃t = +∞ and
∑

t

γ̃1+η
t < +∞.

Then, one defines recursively the following sequences

∀ t ≥ 0, pt+1
i := pt

i (1− γ̃t+1) + γ̃t+11{i=i(t+1)}, 1 ≤ i ≤ N,

p0
i := 0, 1 ≤ i ≤ N,

∀ t ≥ 0, Dr,t+1
N

:= Dr,t
N

(1− γ̃t+1) + γ̃t+1|Xt
i(t+1) − ξt+1|r,

Dr,0
N

:= 0

where r∈ [1, p]. Then, on the event {Xt → x∗},

∀ i∈ {1, . . . , N}, pt
i

a.s.−→ PX (Ci(x∗)), as t →∞, (2.24)

∀ r∈ [1, p], Dr,t
N

a.s.−→ Dr
N

(x∗) as t →∞. (2.25)

Two natural choices for (γ̃t)t≥1 are γ̃t = γt and γ̃t = 1/t (for some numerical experiments
see [39]). The proof of (2.24) and (2.25) relies on some usual martingale techniques coming
from Stochastic Approximation (see [38] or [3] for a detailed proof in the second setting).
When γ̃t = 1/t, one has a simple synthetic expression for (2.24) and (2.24) which can be
attractive for numerical purpose, namely

pt
i =

1
t

∣∣{s∈ {1, . . . , t} | ξs∈ Ci(Xs−1)}∣∣ and Dr,t
N

=
1
t

t∑

s=1

|Xs−1
i(s) − ξs|r. (2.26)

These “companion” procedures are costless since they use some “by-products” of the
competitive and learning phases of the procedure. They yield the parameters (PX -weights
of the Voronoi cells Ci(x∗), Lp-mean quantization error ‖X−X̂x∗‖p) needed for a numerical
use of the quantizer x∗. The fact that these companion procedures work on the event
{Xt → x∗} (whatever the limiting N -tuple x∗ is) shows their consistency.
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Concerning the practical implementation of the algorithm, it is to be noticed that, in
the quadratic case p = 2 (CLV Q algorithm), at each step, the N -tuple Xt+1 remains in
the convex hull of Xt and ξt+1. This induces a stabilizing effect on the procedure which
is observed on simulations which explains why the regular CLV Q algorithm is more often
implemented than its non-quadratic counterparts.

See [39] for an extensive numerical study of the CLV Q algorithm for Gaussian random
vectors. This lead to a large scale quantization of the multivariate normal distributions in
dimensions d = 1 up to d = 10 with a wide range of values of N .

Optimization of the quantization tree: the extended CLV Q algorithm The
principle is to modify a Monte Carlo simulation of the chain (Xk)0≤k≤n by processing a
CLV Q algorithm at each time step k. One starts from a large scale Monte Carlo simu-
lation of the Markov chain (Xk)0≤k≤n i.e. independent copies ξ0 := (ξ0,0, . . . , ξn,0), ξ1 :=
(ξ0,1, . . . , ξn,1), . . . , ξt := (ξt

0, . . . , ξ
t
n), . . . of (Xk)0≤k≤n. Our aim is now to produce for

every k ∈ {0, . . . , n} a quadratic optimal quantizer Xk,∗ := (xk,∗
1 , . . . , xk,∗

Nk
) with size Nk,

with its transition kernel [π∗,kij ], the distribution (p∗,ki )0≤i≤Nk
of X̂

x∗k
k and the induced mean

Lp-quantization errors (1 ≤ p ≤ 2). Note that, if one sets

p∗,kij := P
(
{Xk+1∈ Cj(x∗,k+1)} ∩ {Xk∈ Ci(x∗,k)}

)

then π∗,kij =
p∗,k

ij

p∗,k
i

(and p∗,ki =
∑

j p∗,k−1
ji ), k = 1, . . . , n. So one may focus on the estimation

of the “joint distribution matrices” [p∗,kij ].

In the presentation below of the extended CLVQ algorithm, we assume that the Markov
chain starts X0 = x0∈ Rd, but other choices are possible. We also assume that

∀ k ∈ {1, . . . , n}, PXk
is continuous and E|Xk|2+η < +∞ (2.27)

for some η > 0. This is not a very demanding assumption when dealing with a diffusion
process sampled at discrete times or an Euler scheme. We adopt here the setting in which
the companion step sequence is γ̃t = 1/t and we rely on the non-recursive expressions
like (2.26). We propose to compute the Lr-mean quantization error for a fixed r ∈ [1, 2]
(usually r = 1 or 2 in applications). Then the algorithm reads as follows.

1. Initialization phase (t = 0):

• Initialize the n starting Nk-tuples Xk,0 := {x0,k
1 , . . . , x0,k

Nk
}, of the n CLV Q algorithms

that will quantize the distributions PXk
, k = 1, . . . , n [set N0 = 1 and X0,0 = {x0}].

• Initialize the joint distribution counters βk,0
ij := 0, i∈ {1, . . . , Nk}, j ∈ {1, . . . , Nk},

k = 0, . . . , n− 1.
• Initialize the marginal distribution counter αk,0

i := 0, 1 ≤ i ≤ Nk, k = 1, . . . , n.
• Initialize the Lr-mean quantization counter dk,0 := 0, 1 ≤ i ≤ Nk, k = 1, . . . , n.

2. Updating t ∼→ t + 1: At step t, the Nk-tuples Xk,t, 1 ≤ k ≤ n, have been obtained.
We use ξt+1 := (ξ0,t+1, . . . , ξk,t+1, . . . , ξn,t+1) to carry on the optimization process at every
time step i.e. updating the grids Xk,t into Xk,t+1 as follows. For every k = 1, . . . , n:

• Simulate ξk,t+1 (using ξk−1,t+1 if k ≥ 2 or x0 if k = 1).
• Select the “winner” in the kth CLVQ algorithm i.e. the index ik,t+1 ∈ {1, . . . , Nk}

satisfying
ξk,t+1∈ Cik,t+1(Xk,t).
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• Update the kth CLV Q algorithm:

Xk,t+1
i = Xk,t

i − γt+11{i=ik,t+1}(X
k,t
i − ξk,t+1), 1 ≤ i ≤ Nk.

• Update of the Lr-mean quantization error counter dk,t:

dk,t+1 := dk,t + |Xk,t
ik,t+1 − ξk,t+1|p.

• Update the distribution counters βk−1,t := (βk−1,t
ij )1≤i≤Nk−1,1≤j≤Nk

and (αk,t
i )1≤i≤Nk

,
k = 1, . . . , n (set α0,t+1 = t + 1 and i0,t+1 := 1):

βk−1,t+1
ij := βk−1,t

ij + 1{i = ik−1,t+1, j = ik,t+1}, 1 ≤ i ≤ Nk−1, 1 ≤ j ≤ Nk

αk,t+1
i := αk,t

i + 1{i = ik,t+1}, 1 ≤ i ≤ Nk.

One shows, like for (2.24), that for every k∈ {1, . . . , n}, on the event{
Xk−1,t −→ xk−1,∗

}
∩

{
Xk,t −→ xk,∗

}
,

βk−1,t
ij

t

a.s.−→ p∗,kij = P(Xk−1∈ Ci(xk−1,∗), Xk∈ Cj(xk,∗)), (2.28)

1 ≤ i ≤ Nk−1, 1 ≤ j ≤ Nk,

αk,t
i

t

a.s.−→ p∗,ki = P(Xk∈ Ci(xk,∗)), 1 ≤ i ≤ Nk, (2.29)

πk−1,t
ij :=

βk−1,t
ij

αk−1,t
i

a.s.−→ π∗,k−1
ij = P(Xk∈ Cj(xk,∗) | Xk−1∈ Ci(xk−1,∗)), (2.30)

1 ≤ i ≤ Nk−1, 1 ≤ j ≤ Nk,

dk,t

t

a.s.−→ DXk,2
Nk

(xk,∗) as t → +∞. (2.31)

From a practical viewpoint, this extended version has the same features as the regular
CLV Q algorithm as far as convergence is concerned. One important fact is that the
optimizations of the quantizers at the successive time steps are processed simultaneously
but independently: the quantization optimization at time step k does not affect that of
time step k + 1.

2.6 A priori error bounds in time and space

Proposition 3 below is the application of Theorem 2 to the general diffusion model (2.1)
at times tk = kT/n and its Euler scheme. The error structure is the same except that the
real constant does not depend on n (optimality of the quantizers X̂k is not required). The
main result of this section is Theorem 4 which addresses the last optimization problem:
assuming that every quantization X̂k is optimal, what is the optimal dispatching of the
elementary quantizers among the n time discretization steps.

Proposition 3 Assume that the coefficients b and c of the diffusion (2.1) and the obstacle
function h are Lipschitz continuous. Let (v̂k(X̂k))0≤k≤n be the pseudo-Snell envelope of
(h(tk, Xk))0≤k≤n defined by (2.9). For every p ∈ [1,+∞), there exists a positive real
constant C[b]

Lip
,[σ]

Lip
,[h]

Lip
,T,p > 0 such that

∀n≥ 1, ∀ k∈ {0, . . . , n}, ‖Vk − v̂k(X̂k)‖p ≤ C[b]
Lip

,[σ]
Lip

,[h]
Lip

,T,p

n∑

`=k

‖X` − X̂`‖p . (2.32)
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One gets rid of n since the Lipschitz coefficient K(n) of both chains (Stk) and (Stk) satisfy
lim supn(K(n))n < +∞ (see [3] for details).

To go further we need a new kind of assumption on the marginal distributions of (Xk):
we will assume that the Lp-mean quantization errors of the Xk are ϕ-dominated of in
the following sense: there exists a random vector R ∈ Lp+η(P) (η > 0) and a sequence
(ϕk,n)0≤k≤n<∞ such that, for every n ≥ 1, every k∈ {0, . . . , n} and every N ≥ 1,

min
x∈(Rd)N

‖Xk − X̂x
k ‖p ≤ ϕk,n min

x∈(Rd)N
‖R− R̂x‖p . (2.33)

The point is that the distribution of R may depend on p but not on N , k or n. It is
shown in [3] that uniformly elliptic diffusions (cc∗(x) ≥ ε0Id, ε0 > 0) satisfying either

– b, c∈ C∞b (Rd) (hence with possibly linear growth) (following [31])
or

– b and c are bounded, b is differentiable, c is twice differentiable and Db, Dc and D2c
are bounded and Lipschitz (following [23], Theorem 5.4, p.148-149),
fulfill the domination property (2.33) with ϕk,n := cb,σ,T

√
k/n. We show here that the

local volatility model (1.3) also satisfies this domination property.

Proposition 4 (Local volatility model) Assume that q ≥ d and that σ : (0, +∞)d → Rd⊗q

is uniformly elliptic (σσ∗(ξ)≥ε0Id, ε0 >0), bounded, three times differentiable and satisfies

∀ `1, . . . , `k∈ {1, . . . , d}, ∂kσij

∂ξ`1 · · ·∂ξ`k
(ξ1, . . . , ξd) = O

(
1

ξ`1 · · ·ξ`k

)
as |ξ| →+∞ (2.34)

for every k = 1, 2, 3. Then (Stk)0≤k≤n satisfies the ϕ-domination property (2.33) with

ϕk,n := cσ,T |s0|
√

k/n (cσ,T > 0) and R := (Z` + eZ`
)1≤`≤d, Z ∼ N (0; Id), (2.35)

Remark: Assumption (2.34) can be weakened into ξ 7→ σσ∗(eξ1
, . . . , eξd

) is bounded,
twice differentiable with bounded Lipschitz first two differentials.

Proof: One starts from the elementary inequality, valid for every ξ, ξ′ ∈ R and every
ρ > 0,

|eρξ′ − eρξ| ≤ ρ|ξ′ + eξ′ − (ξ + eξ)|. (2.36)

Let Yt := (ln(S1
t /s0), . . . , ln(Sd

t /s0)) where S denotes a solution of (1.3) (with r = 0).
Then Y is a diffusion process solution of the SDE

dYt = δ(Yt) dt + ϑ(Yt) dWt, Y0 = (1, . . . , 1),

with δ(y) := −1
2

(
|σ`.(ey1

, . . . , eyd
)|2

)
1≤`≤d

and ϑ(y) := σ(ey1
, . . . , eyd

).

It follows from Assumption (2.34) on σ that δ and ϑ are twice differentiable and that
δ, Dδ and Dk(ϑϑ∗), k = 0, 1, 2 are Lipschitz continuous and bounded. This implies
(see [23], Theorem 5.4, p.148-149) that, for every t∈ (0, T ], Yt has an absolutely continuous
distribution PYt = pt(y)λd(dy) satisfying

pt(y) ≤ α π√
βtZ

(y) (α, β > 0)

where π√
βtZ

denotes the density function of
√

βt Z, Z ∼ N (0; Id).
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Now let N ≥ 1 and let r∗ := (r∗i )1≤i≤N be an Lp-optimal N -quantizer of the random
vector R. One defines for every k = 1, . . . , n, a N -quantizer xk,∗ := (xk,∗

i )1≤i≤N by

(xk,∗
i )` := s`

0 exp (
√

βtk (r∗i )
`), ` = 1, . . . , d.

Now, coming back to (St) which starts now at S0 := s0, one has for every k = 1, . . . , n,

inf
x∈(Rd

+)N
‖Stk − Ŝx

tk
‖p

p
≤ ‖Stk − Ŝxk,∗

tk
‖p

p

= E
(

min
1≤i≤N

|(s`
0e

Y `
tk )1≤`≤d − xk,∗

i |p
)

≤ αE
(

min
1≤i≤N

∣∣∣∣
(
s`
0(e

√
β tk Z`

tk − e
√

β tk(r∗i )`
)

1≤`≤d

∣∣∣∣
p)

≤ α (βtk)p/2 max
1≤`≤d

|s`
0|pE

(
min

1≤i≤N

∣∣∣∣(Z + eZ)− ̂(Z + eZ)
r∗

∣∣∣∣
p)

.

The last inequality follows from (2.36). This completes the proof. ♦

Assume that every quantization X̂k is Lp-optimal with size Nk. Then, combining the
bounds obtained in Theorem 1 (time discretization error) and Proposition 3 (spatial dis-
cretization error) with Zador Theorem (Theorem 3, asymptotics of optimal quantization)
yields the following error structure

C1

nθ
+ C2

n∑

k=1

√
tk N

− 1
d

k with N1 + · · ·+ Nn = N − 1 (2.37)

(time 0 is excluded since X̂0 = s0 perfectly quantizes S0 = s0). Minimizing the right
hand of the sum is an easy optimization problem with constraint. Then, in order to
minimize (2.37), one has to make a balance between the time and spatial discretization
errors. The results are detailed in Theorem 4 below.

Theorem 4 (Optimized quantization tree and resulting error bounds) Assume that b, σ
and h are Lipschitz continuous, that (Stk)0≤k≤n is ϕ-dominated in the sense of (2.33) by
ϕk,n := c

√
k/n Let n ≥ 1, N ≥ n + 1. Set X̂0 = S0 = s0 and assume that, for every

k∈ {1, . . . , n}, X̂k is an Lp-optimal (Voronoi) quantization of Xk with size

Nk = |X̂k(Ω)| :=



t
d

2(d+1)

k (N − 1)

t
d

2(d+1)

1 + · · ·+ t
d

2(d+1)

k + · · ·+ t
d

2(d+1)
n




, (2.38)

where dxe := min{k ∈ N | k ≥ x} (then N0 = 1 and N ≤ N0 + · · · + Nn ≤ N + n). Let
(vk(X̂k))0≤k≤n be the quantized pseudo-Snell envelope of (h(tk, Xk))0≤k≤n.
(a) Diffusion: If Xk := Stk , k = 0, . . . , n, then

max
0≤k≤n

‖Vtk − v̂k(X̂k)‖p ≤ Cpe
CpT

(
1 + |s0|

nθ
+

n1+ 1
d

N
1
d

)
.

with θ = 1 if h is semi-convex and θ = 1/2 otherwise.
(b) Euler scheme: If Xk := Stk , k = 0, . . . , n, then

max
0≤k≤n

‖Vtk − v̂k(X̂k)‖p ≤ Cpe
CpT

(
1 + |s0|√

n
+

n1+ 1
d

N
1
d

)
.

Remark: If n,N → +∞ with n = o(N) then Nk ≈ 3d+2
2(d+1)

(
k
n

) d
2(d+1) N

n in (2.38).
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3 Hedging

Tackling the question of hedging American options needs to go deeper in financial mod-
eling, at least from a heuristic point of view. So, we will shortly recall the principles that
govern the pricing and hedging of American options to justify our approach. First, we
come back to the original diffusion model (1.3) which drives the asset price process (St)
(with r = 0). We assume that

q = d and ∀ ξ ∈ Rd, σσ∗(ξ) ≥ ε0Id (3.1)

so that ε0Diag((ξ1)2, . . . , (ξd)2) ≤ cc∗(ξ) ≤ ||σσ∗||∞ |ξ|2Id

where ||σσ∗(ξ)||∞ := sup
ξ∈Rd

||σσ∗(ξ)||.
Notation: For notational convenience we will make the convention throughout this sec-
tion that if Xt is a continuous time process (and tk = kT/n),

∆Xtk+1
:= Xtk+1

−Xtk , k = 0, . . . , n− 1.

3.1 Hedging continuous time American options

First we need to come back shortly to classical European option pricing theory. Let hT be
a European contingent claim that is a nonnegative FT -measurable variable. Assume for
the sake of simplicity that it lies in L2(P,FT ). The representation theorem for Brownian
martingale shows (see [40]) that

hT = E(hT ) +
∫ T

0
Hs.dWs = E(hT ) +

∫ T

0
Zs.dSs (3.2)

where H is a dP ⊗ dt-square integrable F-predictable process and Zs := [c(Ss)∗]−1Hs.
Hence Mt := E(hT | Ft) satisfies Mt = M0 +

∫ t
0Zs.dSs.

An analogy with discrete time model shows that the integral
∫ T

t
Zs.dSs represents the

(algebraic) gain from time t up to time T provided by the strategy (Z`
s)1≤`≤d,s∈[0,T ] (at

every time s∈ [t, T ] the portfolio contains exactly Z`
s units of asset `). So, at time T , the

value of the portfolio invested in risky assets S1, . . . , Sd is exactly hT monetary units: put
some way round, the portfolio Zt replicates the payoff hT ; so it is natural to define the
(theoretical) premium as

Premiumt := E(hT | Ft) = E(hT ) +
∫ t

0
Zs.dSs. (3.3)

If hT := h(T, ST ), the Markov property of (St) implies that Premiumt := p(t, St). If h

is regular enough, then p solves the parabolic P.D.E.
∂p

∂t
+ Lr,σp = 0, p(T, . ) := h(T, . )

and a straightforward application of Itô formula shows that Zt = ∇xp(t, St).

Let us come back to American option pricing. If one defines the premium process
(Vt)t∈[0,T ] of an American option by the P-Snell envelope of its payoff process, then this
premium process is a supermartingale that can be decomposed as the difference of a mar-
tingale Mt and a nondecreasing path-continuous process Kt i.e., using the representation
property of Brownian martingales,

Vt = Mt −Kt = V0 +
∫ t

0
Zs.dSs −Kt (K0 := 0).
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So, if a trader replicates the European option related to the (unknown) European payoff
MT using Zt, he is in position to be the counterpart at every time t of the owner of the
option in case of early exercise since

Mt = Vt + Kt ≥ Vt ≥ ht.

In case of an optimal exercise of his counterpart he will actually have exactly the payoff
at time t since all optimal exercise times occur before the process Kt leaves 0.

If the variational inequality (1.7) admits a regular enough solution ν(t, x), then Zt =
∇xν(t, St). In most deterministic numerical methods, the approximation of such a deriva-
tive is usually less accurate than that of the function ν itself. So, it is hopeless to implement
such methods for this purpose as soon as the dimension d ≥ 3.

3.2 Hedging Bermuda options

Let (V n
tk

)0≤k≤n denote the theoretical premium process of the Bermuda option related to
(h(tk, Stk))0≤k≤n. It is a (Ftk)0≤k≤n-supermartingale defined as a Snell envelope by

V n
tk

:= ess sup {Etk (h(τ, Sτ )) , τ ∈ Θn
k}

where Θn
k denotes the set of {tk, . . . , tn}-valued F-stopping times.

Then, the Ftk -Doob decomposition of (V n
tk

) as a the (Ftk)-supermartingale yield:

V n
tk

= Mn
k −An

k ,

where (Mn
tk

) is a Ftk -L2-martingale and (An
tk

) is a non-decreasing integrable Ftk -predictable
process (An

0 := 0). In fact, the increment of An
k can easily be specified since

∆An
k := An

k −An
k−1 = V n

tk−1
− Etk−1

V n
tk

=
(
h(tk−1, Stk−1

)− Etk−1
V n

tk

)
+

. (3.4)

The representation theorem applied on each time interval [tk, tk+1], k = 0, . . . , n then
yields a F-progressively measurable process (Zn

s )s∈[0,T ] satisfying

Mn
k :=

∫ tk

0
Zn

s .dSs, 0 ≤ k ≤ n, with E
∫ T

0
|c∗(Ss)Zn

s |2ds < +∞ (3.5)

(keep in mind that <
∫ tk
0 Us.dSs >t=

∫ tk
0 |c∗(Ss)Us|2ds).

Now, in such a setting, continuous time hedging of a Bermuda option is unrealistic
since the approximation of an American by a Bermuda option is directly motivated by
discrete time hedging (at times tk). So, it seems natural to look for what a trader can
do best when hedging only at times tk. This leads to introduce the closed subspace Pn

of L2(c∗(S.)dP ⊗ dt) := {(Z)s∈[0,T ] progressively measurable,
∫ T
0 |c∗(Ss)Zs|2ds < +∞}

defined by

Pn =
{

(ζs)s∈[0,T ], ζs := ζtk , s∈ [tk, tk+1), ζtk Ftk -measurable, E
∫ T

0
|c∗(Ss)ζs|2ds <+∞

}
.

(3.6)
and the induced orthogonal projection projn onto Pn (for notational simplicity a process
ζ∈ Pn will be often referred as (ζtk)0≤k≤n). In particular, for every U ∈ L2(c∗(S.)dP⊗ dt)

‖c∗(S.)projn(U).‖L2(dP⊗dt) ≤ ‖c∗(S.)U.‖L2(dP⊗dt).
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Doing so, we follow classical ideas introduced by by Föllmer & Sondermann ([20]) for
hedging purpose in incomplete markets (see also [10]). One checks that Pn is isometric
with the set of square integrable stochastic integrals with respect to (Stk)0≤k≤n, namely

{
n∑

k=1

ζtk .∆Stk+1
, (ζtk)0≤k≤n∈ Pn

}
.

Computing projn(Zn
. ) amounts to minimizing E

(
n∑

k=1

∫ tk+1

tk

|c∗(Ss)(Zn
s − ζtk)|2ds

)
over

(ζk)0≤k≤n∈ Pn. Setting ζn
tk

:= projn(Zn
. ) and standard computations yield

ζn
tk

:=
(
Etk

∫ tk+1

tk

cc∗(Ss) ds

)−1

Etk

(∫ tk+1

tk

cc∗(Ss)Zn
s ds

)

=
(
Etk∆Stk+1

(∆Stk+1
)∗

)−1Etk(∆Mn
k+1∆Stk+1

) (3.7)

=
(
Etk∆Stk+1

(∆Stk+1
)∗

)−1Etk

(
∆V n

tk+1
∆Stk+1

)
. (3.8)

The last equality follows from the fact that An
k−1 is Ftk−1

-measurable and from the mar-
tingale property of (Stk). The increment

∆Rn
tk+1

:=
∫ tk+1

tk

(Zn
s − ζn

tk
).dSs = ∆Mn

k+1 − ζn
tk

.∆Stk+1
(3.9)

represents the hedging default induced by using ζn
tk

instead of Zn
. . The sequence (∆Rn

tk
)1≤k≤n

is a Ftk -martingale increment process, singular with respect to (Stk)0≤k≤n since
Etk(∆Rtk+1

∆Stk+1
) = 0. It is possible to define the local residual risk by

Etk |∆Rn
tk+1

|2 = Etk

(∫ tk+1

tk

|c∗(Ss)(Zn
s − ζtk)|2ds

)
, k∈ {0, . . . , n− 1}. (3.10)

A little algebra yields the following, which is more appropriate for quantization purpose:

Etk |∆Rn
tk+1

|2=Etk |∆V n
tk+1
−Etk∆V n

tk+1
|2−(Etk∆Stk+1

∆S∗tk+1
)−1

(
Etk∆V n

tk+1
∆Stk+1

)2
. (3.11)

Formulae (3.8) or (3.10), based on Stk and V n
tk

have natural approximations by quantiza-
tion. On the other hand, (3.7) and (3.10) are more appropriate to produce some a priori
error bounds (when simulation of the diffusion is possible).

3.3 Hedging Bermuda option on the Euler scheme

When the diffusion cannot be easily simulated, we consider the (continuous time) Euler
scheme defined by

∀ t∈ [tk, tk+1), St = Stk + c(Stk)(Wt −Wtk), S0 := s0 > 0.

This process is P-a.s. defined since it is a.s. nonzero (but it may become negative adverse
to the original diffusion). Then, mimicking the above subsection, leads to define some
processes Z

n, M
n and A

n by

V
n
tk

:= M
n
k −A

n
k (Doob decomposition)

M
n
k :=

∫ tk

0
Z

n
s c(Ss) dWs =

∫ tk

0
Z

n
s .dSs (with s = ti if s∈ [ti, ti+1))

∆A
n
k := A

n
k −A

n
k−1 = V

n
tk−1

− Etk−1
V

n
tk

=
(
h(tk−1, Stk−1

)− Etk−1
V

n
tk

)
+

.
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and A
n
0 := 0. The (simpler) formulae for the hedging process hold

ζ
n
tk

:= (Etk∆Stk+1
∆S

∗
tk+1

)−1Etk(∆V
n
tk+1

∆Stk+1
) =

1
∆tk+1

Etk

∫ tk+1

tk

Z
n
s ds. (3.12)

The related hedging default and local residual risk are defined by mimicking (3.10) and (3.11):

∆R
n
tk+1

:=
∫ tk+1

tk

(Zn
s − ζ

n
tk

).dSs = ∆Mn
k+1 − ζ

n
tk

.∆Stk+1
(3.13)

Etk |∆R
n
tk+1

|2 := Etk |∆V
n
tk+1
− Etk∆V

n
tk+1

|2−(Etk∆Stk+1
∆S

∗
tk+1

)−1
(
Etk∆V

n
tk+1

∆Stk+1

)2
.(3.14)

3.4 Quantized hedging and local residual risks

The quantized formulae for strategies and residual risks are simply derived from formu-
lae (3.8) or (3.12) by replacing Stk (Stk respectively) by their quantization Ŝtk (Ŝtk respec-

tively) and V n
k := vn

k (Stk) by V̂ n
k := v̂n

k (Ŝtk) (V̂ n
k := v̂n

k (Ŝtk) respectively). It follows from
section 2 that V n

tk
:= vk(Stk) is approximated by v̂n

k (Ŝtk). So, one sets (for the diffusion)

ζ̂n
k := (Etk∆Ŝtk+1

∆Ŝ∗tk+1
)−1Êk

(
(v̂n

k+1(Ŝtk+1
)− v̂n

k (Ŝtk))(Ŝtk+1
− Ŝtk)

)
. (3.15)

|∆R̂n
tk+1

|2 := Etk |∆V̂ n
tk+1
− Etk∆V̂ n

tk+1
|2 − (Etk∆Ŝtk+1

∆Ŝ∗tk+1
)−1

(
Etk∆V̂ n

tk+1
∆Ŝtk+1

)2
.(3.16)

One derives their counterparts ̂̄ζn

k , |∆ ̂̄Rn

tk+1
|2 for the Euler scheme by analogy. The point

to be noticed is that computing ζ̂n
tk

or ̂̄ζn

k at a given elementary quantizer xk
i of the kth

layer requires to invert only one matrix which does not cost much.

4 Convergence of the hedging strategies and rates

This section is devoted to the evaluation of the different errors (quantization, residual
risks) induced by time and spatial discretizations.

4.1 From Bermuda to America (time discretization)

First, one extends the definition of V n
t at any time t∈ [0, T ] by setting

V n
t := V n

tk
+

∫ t

tk

Zn
s .dSs = V n

tk+1
−

∫ tk+1

t
Zn

s .dSs + ∆An
k+1, t∈ [tk, tk+1). (4.1)

This definition implies that, for every k∈ {0, . . . , n}, the left-limit of V n satisfies

V n
tk− = V n

tk
+ ∆An

k+1. (4.2)

Proposition 5 Assume that the payoff process ht = h(t, St) where h is a semi-convex
function. Assume that the diffusion coefficient c is Lipschitz continuous.
(a) For every k∈ {0, . . . , n}, V n

tk
≤ Vtk and for every t∈ (tk, tk+1), (V n

t −Vt)+ ≤ ∆An
k+1.

Furthermore P-a.s., for every t∈ [0, T ],

{ |V n
t − Vt| ≤ Ch,c

T
n (1 + Et(maxt≤s≤T |Ss|2)),

|V n
t − V

n
t | ≤ [h]LipEt(maxtk≥t |Stk − Stk |).

(b) The following bound holds for the hedging strategies (in the “
√

cc∗ metric”)

E
(∫ T

0
|c∗(Ss)(Zs − Zn

s )|2ds

)
+ E

(∫ T

0
|c∗(Ss)Zn

s − c∗(Ss)Z
n
s )|2ds

)
≤ Ch,c

T

n
. (4.3)
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Proof: (a) The inequality between V n and V at times tk is obvious since Vt is defined as
a supremum over a larger set of stopping times than V n

tk
. Then, using the supermartingale

property of V, equality (4.1) and Jensen inequality yield

(V n
t −Vt)+ ≤ (Et(V n

tk+1
)+∆An

k+1−Et(Vtk+1
))+ ≤ Et((V n

tk+1
−Vtk+1

+∆An
k+1)+) ≤ ∆An

k+1.

Now, using the expression (3.4) for ∆An
k+1 and V n

tk
≥ h(tk+1, Stk+1

) imply

∆An
k+1 = (h(tk, Stk)− EtkV n

tk+1
)+ ≤ (h(tk, Stk)− Etkh(tk+1, Stk+1

))+

We need at this stage to use the regularity of h (semi-convex Lipschitz continuous)

h(tk, Stk)− h(tk+1, Stk+1
) = h(tk, Stk+1

)− h(tk+1, Stk+1
) + h(tk, Stk)− h(tk, Stk+1

)

≤ [h]Lip∆tk+1 − δh(tk, Stk).(Stk+1
− Stk) + ρh (Stk+1

− Stk)2.

Hence h(tk, Stk)−Etkh(tk+1, Stk+1
) ≤ [h]Lip∆tk+1 + ρhEtk |Stk+1

− Stk |2

≤ [h]Lip∆tk+1 + ρhEtk

∫ tk+1

tk

Tr(cc∗)(Ss) ds

≤ [h]Lip∆tk+1 + Cρh∆tk+1

(
1 + Et( max

s∈[tk,T ]
|Ss|2)

)

≤ Cc,h
T

n

(
1 + Etk( max

s∈[tk,T ]
|Ss|2)

)
,

for some constant Ch,c > 0. Finally, it yields

∆An
k+1 ≤ Cc,h

T

n

(
1 + Etk( max

s∈[tk,T ]
|Ss|2)

)
. (4.4)

To complete the inequality for |Vt − V n
t |, we first notice that, if t∈ [tk, tk+1)

V n
t = V n

tk+1
−

∫ tk+1

t
Zn

s .dSs + ∆An
k+1 ≤ h(tk+1, Stk+1

)−
∫ tk+1

t
Zn

s .dSs (4.5)

so that V n
t = Et(V n

t ) ≥ Et(h(tk+1, Stk+1
)) = h(t, St) + Et(h(tk+1, Stk+1

)− h(t, St)).

Using again the semi-convexity property of h at (t, St) finally yields that

V n
t + Cc,h

T

n

(
1 + Et( max

s∈[t,T ]
|Ss|2)

)
≥ h(t, St).

As it is a supermartingale as well, it necessarily satisfies

P-a.s. V n
t + Cc,h

T

n

(
1 + Et(max

s≥t
|Ss|2)

)
≥ Snell(h(t, St)) = Vt

which yields the expected result. The second inequality is obvious once noticed

|V n
t − V

n
t | ≤ max

tk≥t
|h(tk, Stk)− h(tk, Stk)| ≤ [h]Lip max

tk≥t
|Stk − Stk |.

(b) One considers the càdlàg semi-martingale Vt − V n
t = V0 − V n

0 +
∫ t
0 (Zs − Zn

s ).dSs −
(Kt −An

t ) where t := k on [tk, tk+1). It follows from Itô formula for jump processes that

∫ T

0
|c∗(Ss)(Zs − Zn

s )|2ds +
∑

tk≤T

(∆An
tk

)2 + (Vt − V n
t )2
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= −2
∫ T

0
(Vs − V n

s−)(Zs − Zn
s ).dSs + 2

∫ T

t
(Vs − V n

s−)d(Ks −An
s ).

Now
∫ T

0
(Vs − V n

s−)d(Ks −An
s ) =

∫ T

0
(Vs − V n

s−)dKs +
∫ T

t
(V n

s− − Vs)dAn
s

≤
∫ T

0
(Vs − V n

s )dKs +
∑

tk≤T

(∆An
k)2

since V n
tk− = V n

tk
+ ∆An

k ≤ Vtk + ∆An
k . This yields, using the inequality obtained in (a)

and (4.4),

∫ T

0
(Vs − V n

s−)d(Ks −An
s ) ≤ Ch,c

T

n

∫ T

0
(1 + Es sup

s≤u≤T
|Su|2)dKs + An

n max
t<tk≤T

∆An
k

≤ Ch,c
T

n


KT

(
1 +sup

s∈[0,T ]
(Es sup

s≤u≤T
|Su|2)

)
+

(
1 +sup

s∈[0,T ]
(Es sup

s≤u≤T
|Su|2)

)2

 .

One checks that
∫ t
0 (Vs − V n

s )(Zs − Zn
s ).dSs is a true martingale so that

E
(∫ T

0
|c∗(Ss)(Zs − Zn

s )|2ds

)
≤ Ch,c

T

n
(‖KT ‖2 + 1) (1 + ‖ max

s∈[0,T ]
|Ss|2‖2).

Now KT ∈ L2 since 0 ≤ KT ≤ V0 +
∫ T
0Zs.dSs which yields the expected result.

The inequality involving the Euler scheme is obtained following the same approach
using now V n − V

n.

E
∫ T

0
|c∗(Ss)Zn

s −c∗(Ss)Z
n
s |2ds ≤ 2E

∫ T

0
(V n

s − V
n
s )d(Kn

s −K
n
s ) + E(h(T, ST )− h(T, ST ))2

≤ 2[h]LipE
∫ T

0
Es

(
max
tk≥s

|Stk − Stk |
)

d(Kn
s + K

n
s ) + [h]2

Lip
‖ST − ST ‖2

2

≤ C E
(

sup
t∈[0,T ]

Et

(
max
tk≥t

|Stk − Stk |
)

(Kn
T + K

n
T )

)
+ C‖ST − ST ‖2

2

≤ C‖ sup
t∈[0,T ]

Et max
tk≥t

|Stk−Stk | ‖2

(‖Kn
T ‖2 + ‖Kn

T ‖2

)
+ C‖ST − ST ‖2

2

≤ Ch,c
T

n

(‖Kn
T ‖2 + ‖Kn

T ‖2 + 1
)
. (4.6)

Now ‖Kn
T ‖2 ≤ ‖V n

0 ‖2 + ‖
∫ T

0
(Zs − Zn

s ).dSs‖2 ≤ C1(1 + ‖ sup
s∈[0,T ]

|Ss| ‖2) + O(1/n), hence

supn ‖Kn
T ‖2 < +∞. Concerning K

n
T one has

‖Kn
T −K

n
T ‖2 ≤ ‖V n

0 ‖2 + ‖V n
0‖2 + ‖

∫ T

0
Zn

s .dSs −
∫ T

0
Z

n
s .dSs)‖2 ≤ C + O(1/

√
n) by (4.6)

so that supn ‖Kn
T ‖2 < +∞. Plugging this back in (4.6) completes the proof. ♦

We are now in position to get a first result about the control of residual risks induced
by the use of discrete time hedging strategies. It shows that this control is essentially
ruled by the path-regularity of the process Z.
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Theorem 5 If h and c are Lipschitz continuous and h is semi-convex, then,

‖c∗(S.)(Z. − ζn
. )‖L2(dP⊗dt) ≤ ‖c∗(S.)(Z. − projn(Z).)‖L2(dP⊗dt) +

C√
n

(4.7)

(projn(Z) is the projection of Z on Pn). Furthermore ‖c∗(S.)(Z. − projn(Z).)‖L2(dP⊗dt)

goes to 0 as n →∞.

Remark: The term ‖c∗(S.)(Z. − projn(Z).)‖L2(dP⊗dt) which rules the rate of convergence
of ‖c∗(S.)(Z. − ζn

. )‖L2(dP⊗dt) clearly depends on the path-regularity of Zs. Theorem 6(c)
below provides some elements about its own rate of convergence.

Proof: Set for convenience ζ := projn(Z). Minkowski inequality yields

‖c∗(S.)(Zs − ζn
. )‖L2(dP⊗dt) ≤ ‖c∗(S.)(Z. − ζ.)‖L2(dP⊗dt) + ‖c∗(S.)(ζ. − ζn

. )‖L2(dP⊗dt) .

Now ζ. − ζn
. = projn(Z. − Zn

. ) so that by Inequality (4.3) in Proposition 5(b),

‖c∗(S.)(ζ. − ζn
. )‖L2(dP⊗dt) ≤ ‖c∗(S.)(Z. − Zn

. )‖L2(dP⊗dt) ≤
C√
n

.

Now, let F be a bounded adapted continuous-path process. Set Φs :=
n

T

∫ tk+1

tk

Fudu, s ∈
[tk, tk+1). Using the properties of projn, one gets

‖c∗(S.)(Z. − ζ.)‖L2(dP⊗dt) ≤ 2 ‖c∗(S.)(Z. − F.)‖L2(dP⊗dt) + ‖c∗(S.)(F. − projn(F ).)‖L2(dP⊗dt)

≤ 2 ‖c∗(S.)(Z. − F.)‖L2(dP⊗dt) + ‖c∗(S.)(F. − Φ.)‖L2(dP⊗dt)

≤ 2 ‖c∗(S.)(Z. − F.)‖L2(dP⊗dt) +
∥∥∥∥
∫ T

0
||c(Ss)||2ds(w(F,

T

n
) ∧ 2‖F‖∞)2

∥∥∥∥
L2(P)

where w(F, δ) denotes the uniform continuity modulus of F . One concludes using that
L∞(c∗(St) dP⊗ dt) is everywhere dense in L2(c∗(St) dP⊗ dt). ♦

4.2 Hedging error induced by the (quadratic) quantization

We will focus on the error at time t = 0.

Proposition 6 Assume that σ is Lipschitz continuous, bounded and uniformly elliptic
and that h is Lipschitz continuous. Assume that the dispatching rule (2.38) of the Nk

applies and that the quadratic quantization of the Stk are optimal. Assume that N and n

go to +∞ so that limn N/n
d(1− 1

2(d+1)
)+1 = +∞. Then, for every n

|ζn
0 − ζ̂n

0 | ≤
C(1 + |s0|)

ε0 min1≤`≤d(s`
0)2

n
3
2

(N/n)
1
d

.

Proof: The hedging vectors ζn
0 and ζ̂n

0 satisfy respectively

(E(∆St1∆S∗t1))ζ
n
0 = E ((V n

1 − V n
0 )∆St1) (4.8)

(E(∆Ŝt1(∆Ŝt1)
∗))ζ̂n

0 = E
(
(V̂ n

1 − V̂ n
0 )∆Ŝt1

)
(4.9)

where V n
1 = vn

1 (St1) and V n
0 = vn

0 (s0), etc. The quadratic quantization Ŝt1 of St1 being
optimal and S0 = Ŝ0 =s0 being deterministic, one has E(∆St1 | ∆Ŝt1)=∆Ŝt1 . In particular

E(∆St1)=E(∆Ŝt1) and ‖∆Ŝt1‖2 ≤ ‖∆St1‖2 =‖St1 − s0‖2 ≤ C
√

T/n(1 + |s0|).
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Then E(∆St1∆S∗t1)− E(∆Ŝt1∆Ŝ∗t1) = E((∆St1 −∆Ŝt1)(∆St1 −∆Ŝt1)
∗)

so that ||E(∆St1∆S∗t1)− E(∆Ŝt1∆Ŝ∗t1)|| ≤ ‖∆St1 −∆Ŝt1‖2
2
≤ CN

− 2
d

1 .

Now |E ((V n
1 − V n

0 )∆St1) − E
(
(V̂ n

1 − V̂ n
0 )∆Ŝt1

)∣∣∣

≤ ‖∆Ŝt1‖2(‖V n
1 − V̂ n

1 ‖2 + |V n
0 − V̂ n

0 |) + ‖V n
1 ‖2‖St1 − Ŝt1‖2

≤ C√
n

(1 + |s0|) n

(N/n)
1
d

+
C

N
1
d
1

One derives from (4.8) and (4.9) that
∣∣∣E(∆St1∆S∗t1)(ζ

n
0 − ζ̂n

0 )
∣∣∣ ≤

∣∣∣E ((V n
1 − V n

0 )∆St1)− E
(
(V̂ n

1 − V̂ n
0 )∆Ŝt1

)∣∣∣

+||E(∆St1∆S∗t1)− E(∆Ŝt1∆Ŝ∗t1)|| |ζ̂n
0 |

≤ C(1 + |s0|)
√

n

(N/n)
1
d

+
C

N
2
d
1

|ζ̂n
0 |.

Now, it follows from cc∗(ξ) ≥ ε0 (Diag(ξ))2 that

E(∆St1∆S∗t1) ≥ ε0

(∫ t1

0
min

1≤`≤d
E(S`

s)
2ds

)
Id ≥ ε0

(∫ t1

0
min

1≤`≤d
(ES`

s)
2ds

)
Id =

(
min

1≤`≤d
(s`

0)
2 ε0T

n

)
Id

so that ||(E(∆St1∆S∗t1))
−1|| ≤ ε−1

0 ( min
1≤`≤d

s`
0)
−2n/T . First, one derives from (4.8) that

|ζn
0 | ≤ C

ε0

√
n. Hence

|ζn
0 − ζ̂n

0 | ≤ C n

ε0 min1≤`≤d(s`
0)2


(1 + |s0|)

√
n

(N/n)
1
d

+
1

√
n ∨N

1
d
1

+
1

n ∨N
2
d
1

(1 + |ζ̂n
0 |)




C n

ε0 min1≤`≤d(s`
0)2


(1 + |s0|)

√
n

(N/n)
1
d

+
1

√
n ∨N

1
d
1

+
1

n ∨N
2
d
1

(1 + |ζ̂n
0 − ζn

0 |+
1
ε0

√
n)


 .

The dispatching rule (2.38) implies that N1 = CdNn
−1− d

2(d+1) + o(N1), so that, given

the above assumption, limn
N

1
d
1√
n

= +∞ i.e. n

N
2
d
1

goes to 0. Consequently

|ζn
0 − ζ̂n

0 | ≤
C n

ε0 min1≤`≤d(s`
0)2


(1 + |s0|)

√
n

(N/n)
1
d

+
1

N
1
d
1

+
√

n

ε0N
2
d
1


 .

Inspecting the three terms on the righthand side of the inequality completes the proof. ♦

Remark: The above proof points outs the fact that a quantization tree optimized for the
premium computation is not optimal at all for the hedging. So, the above error bound
could be improved if one adopts another dispatching policy, optimized for the hedging,
although it will never reach the performances devoted to the premium computation.
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4.3 Approximation of the strategy: rate of convergence

In this section we evaluate the global residual risk on time intervals [0, T ′], T ′ < T , induced
by the use of the time discretization of the diffusion with step T/n, namely

E
∫ T−δ

0
|c∗(Ss)(Zs − ζs)|2 ds, (4.10)

where (Zt) is defined by (3.2) and (ζt) := projn(Z) is the projection on the set Pn of
elementary predictable strategies. Our basic assumption in this section is

(Σ) ≡ (i) c∈ C∞
b ((0, +∞)d), (ii) σσ∗(x) ≥ ε0 Id.

Assumption (Σ)(i) is fulfilled when σ∈ Cb((0,+∞)d) ∩ C∞
b ((0, +∞)d) and

∂kσi.(x) = O(1/|xi|) as |x| → +∞, k ≥ 1, i = 1, . . . , d.

Theorem 6 Assume that (Σ) holds, that h is Lipschitz continuous and that s0∈ (0, +∞)d.
(a) For every T ′ ∈ [0, T ) there exists some real constants K and θ and an integer q ≥ 2
(only depending on T and on the bounds of σ and its first two derivatives) such that

E
∫ T ′

0
|c∗(Ss)(Zs − ζs)|2 ds ≤

(
1 +

1
(T − T ′)3/2

)
(1 + |s0|)q K

ε
5/2
0

eθ
√

ln n

n
1
2

. (4.11)

(b) Let δn := ρn−
1
3 (ρ > 0). There exists some real constants K and θ and an integer

q ≥ 2 (depending on ρ, T and on the bounds of σ and its first two derivatives) such that

E
∫ T−δn

0
|c∗(Ss)(Zs − ζs)|2 ds ≤ K

ε
5/2
0

(1 + |s0|)q eθ
√

ln n

n
1
6

. (4.12)

(c) If furthermore h is semi-convex. Then rates obtained in items (a) and (b) rule the rate
of convergence of ‖c∗(S.)(Z. − ζn

. )‖L2(Ω×[0,Tn]dP⊗dt) in Theorem 5 when Tn = T ′ < T or
T ′ = T − δn respectively.

Remarks: • The term eθ
√

ln n is due to the non-uniform ellipticity of S: this is the cost of
truncation around zero. One may look at that some way round: if we had worked with the
uniformly elliptic diffusion X = ln(St) instead of (St), then the obstacle function would
have become h(t, expx), with an exponential growth. So a truncation would have been
necessary with a similar cost.

• In most financial applications the obstacle h is at most Lipschitz continuous (for
example h(t, x) = e−rt(K − ertx)+ for a put of strike K). However, if the obstacle is
more regular, namely h ∈ C1,2, then no regularization is needed and the resulting error is
O(eθ

√
ln n/n) and O(eθ

√
ln n/n1/3) in claims (a) and (b) of Theorem 6 respectively. Finally,

in case of a uniformly elliptic diffusion our method of proof would lead to O(1/n) and
O(1/n1/3) rates respectively.

Some technical difficulties arise when evaluating the term in (4.10) directly, so we first
reduce the problem to a simpler one. This is done in two steps.

Lemma 1 (Step 1) Set Hs := c∗(Ss).Zs and ηs :=
n

T
Etk

∫ tk+1

tk

Hudu, s ∈ [tk, tk+1).

Then, under the assumptions of Theorem 6,

E
∫ T

0
|c∗(Ss)(Zs − ζs)|2 ds ≤ C

n
+ 2E

∫ T

0
|Hs − ηs|2 ds. (4.13)
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Proof: We temporarily define zs :=
1

tk+1 − tk
Etk

∫ tk+1

tk

Zrdr, tk ≤ s < tk+1. Note that z

is an adapted process which is piecewise constant. Since ζ is the L2−projection of Z on
the subspace of these type of processes, we have

E
∫ T

0
|c∗(Ss)(Zs − ζs)|2 ds ≤ E

∫ T

0
|c∗(Ss)(Zs − zs)|2 ds

≤ 2E
∫ T

0
|Hs − ηs|2 ds + 2E

∫ T

0
|ηs − c∗(Ss)zs|2 ds.

It remains to prove that the second term in the right hand of the above inequality is
dominated by C/n. We write this term as

E
n−1∑

k=0

∫ tk+1

tk

∣∣∣∣
c∗(Ss)
∆tk+1

Etk

∫ tk+1

tk

Zudu− 1
∆tk+1

Etk

∫ tk+1

tk

c∗(Su)Zudu

∣∣∣∣
2

ds ≤ 2(I + J)

with I := E
n−1∑

k=0

∫ tk+1

tk

∣∣∣∣
c∗(Ss)− c∗(Stk)

∆tk+1
Etk

∫ tk+1

tk

Zudu

∣∣∣∣
2

ds,

J := E
n−1∑

k=0

∫ tk+1

tk

∣∣∣∣
1

∆tk+1
Etk

∫ tk+1

tk

(c∗(Su)− c∗(Stk)).Zudu

∣∣∣∣
2

ds.

Let us evaluate J . Set s := tk if s ∈ [tk, tk+1). Conditional Schwartz’s inequality
implies that

∣∣∣∣Etk

∫ tk+1

tk

(c∗(Su)− c∗(Stk))Zudu

∣∣∣∣
2

≤ Etk

∫ tk+1

tk

‖c∗(Su)− c∗(Stk)‖2duEtk

∫ tk+1

tk

|Zu|2du

≤ [c∗]2
Lip

∫ tk+1

tk

Etk |Su − Stk |2duEtk

∫ tk+1

tk

|Zu|2du.

Now, classical results about diffusions with Lipschitz continuous coefficients yield that, for
every u∈ [tk, tk+1),

Etk |Su − Stk |2 ≤ C∆tk+1Etk((1 + sup
t∈[0,T ]

|St|)2).

for some positive real constant C. Consequently

J ≤ C
T

n
E

(
n−1∑

k=0

Etk((1 + sup
t∈[0,T ]

|St|)2)Etk

∫ tk+1

tk

|Zu|2du

)

= C
T

n
E

(
(1 + sup

t∈[0,T ]
|St|)2

n−1∑

k=0

Etk

∫ tk+1

tk

|Zu|2du

)
≤ C

n

∥∥∥∥∥(1 + sup
t∈[0,T ]

|St|)2
∥∥∥∥∥

2

∥∥∥∥∥
n−1∑

k=0

Etkλk+1

∥∥∥∥∥
2

where λk+1 :=
∫ tk+1

tk

|Zu|2 du for every k∈ {1, . . . , n− 1}. Since the λk’s are nonnegative,

n−1∑

k=0

λ2
k+1 ≤

(
n−1∑

k=0

λk+1

)2
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so that E
(

n−1∑

k=0

Etkλk+1

)2

≤ 2E
(

n−1∑

k=0

(λk+1 − Etkλk+1)

)2

+ 2E
(

n−1∑

k=0

λk+1

)2

= 2E
n−1∑

k=0

(λk+1 − Etkλk+1)
2 + 2E

(
n−1∑

k=0

λk+1

)2

≤ 4E
(

n−1∑

k=0

λk+1

)2

= 4E
(∫ T

0
|Zu|2 du

)2

.

Finally J ≤ C

n
‖(1 + sup

t∈[0,T ]
|St|)2‖2

∥∥∥∥
∫ T

0
|Zu|2 du

∥∥∥∥
2

.

It is a standard result on diffusions that ‖(1 + supt∈[0,T ] |St|)2‖2 is finite. It remains to
prove that the term involving Z is finite. Since cc∗(Ss) ≥ ε0 Diag((S1

s )2, . . . , (Sd
s )2), it

follows that |Zs|2 ≤ ε−1
0 max1≤i≤d(Si

s)
2 |Hs|2 so that, by Schwartz’s Inequality,

E
(∫ T

0
|Zs|2 ds

)2

≤
(
E sup

0≤t≤T

∣∣(S−1)t

∣∣8
)1/2(

E
(∫ T

0
|Hs|2 ds

)4
)1/2

≤C

(
E

(∫ T

0
|Hs|2 ds

)4
)1/2

<+∞

where (S−1)t := (1/S1
t , . . . , 1/Sd

t ) satisfies an SDE with bounded coefficients, so that its
supremum has finite polynomial moments. Finally, the last inequality is a standard fact
from RBSDE theory (see [19] or [2]). So we have proved that J ≤ C/n.

The term I can be treated the same way round. ♦

Step 2. The second type of difficulty which appears is due to the following two facts:
– The obstacle h(t, St) is not sufficiently smooth and so we do not have a nice control

on the increasing process (Kt).
– The diffusion process (St) is not uniformly elliptic (because c(0) = 0) and so we do

not have nice evaluations of the density of St.
In order to overcome these difficulties we will replace S by an elliptic diffusion denoted

S and, when necessary, the obstacle h by a smoother obstacle h. Namely, let ε∈ (0, 1] and
λ > 0. We consider:

– A function h ∈ C1,2(R+ ×Rd,R) using a regularization by convolution of order ε of
h. In particular, since h is Lipschitz continuous, we have

‖h− h‖∞ ≤ Ch ε and ‖(∂t + Lc)h‖∞ ≤ Ch ε−1 (4.14)

where Lc is the infinitesimal generator of the diffusion S.
– A function ϕ

λ
∈ C∞

b (R,R) satisfying

ϕ
λ
(ξ) := ξ if ξ ≥ e−λ, ϕ

λ
(ξ) :=

e−λ

2
if ξ ≤ 1

2
e−λ (4.15)

and
∀m ≥ 1,

∥∥∥ϕ
(m)
λ

∥∥∥
∞
≤ Cm eCmλ (4.16)

where Cm is a real constant (not depending upon λ). Then the approximating diffusion
coefficient c

λ
defined for every x = (x1, . . . , xd)∈ Rd by

c
λ
(x) := c(ϕ

λ
(x1), . . . , ϕ

λ
(xd))
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satisfies
c

λ
∈ C∞b (Rd) and c

λ
c∗

λ
(x) ≥ ε0

4
e−2λId. (4.17)

We consider now the solution Sx of the SDE

dSx
t = r Sx

t dt + cλ(Sx
t )dWt, Sx

0 = x.

Let P t(x, dy) denote its markov semi-group defined by P tf(x) = Ef(Sx
t ). We will denote

by St the solution Ss0 starting at s0∈ (0, +∞)d. The related Snell envelope

Y t = ess supτ∈Tt
Et h(τ, Sτ )

satisfies the RBSDE

Y t = h(T, ST ) + KT −Kt −
∫ T

t
Hs.dWs

for some non decreasing process K and some progressively measurable dP ⊗ dt-square
integrable process H (see [19] and [2] for this topic). We also consider the approximation

η
s

=
n

T
Etk

∫ tk+1

tk

Hsds, tk ≤ s < tk+1.

Lemma 2 Assume that (Σ) holds. Then

E
∫ T

0
|Hs − ηs|2 ds ≤ C

(
ε2 + (1 + |s0|)2e−Cλ2/T

)
+ E

∫ T

0

∣∣∣Hs − η
s

∣∣∣
2
ds. (4.18)

Proof: We rely on the stability property of RBSDE (see [19] and [2]).

E
∫ T

0
|Hs −Hs|2 ds ≤ C E sup

0≤s≤T
|h(s, Ss)− h(s, Ss)|2

≤ C

(
‖h− h‖2

∞ + E sup
0≤s≤T

|h(s, Ss)− h(s, Ss)|2
)

.

Let τ := inf{t > 0 | St ≤ e−λ}. One checks directly on model (1.1) that

P(τ ≤ T ) = P( inf
0≤s≤T

Ss ≤ e−λ) = P( sup
0≤s≤T

(− ln Ss) ≥ λ) ≤ Ce−Cλ2/T .

Since St = St on the event {t ≤ τ}, we obtain

E
∫ T

0
|Hs −Hs|2 ds ≤ C

(
‖h− h‖2

∞ + E
(

sup
0≤s≤T

(|h(s, Ss)|2 + |h(s, Ss)|2)1{τ≤T}

))

≤ C
(
ε2 + (1 + |s0|)2

√
P(τ ≤ T )

)

≤ C(ε2 + (1 + |s0|)2e−Cλ2/T ).

On the other hand since η and η are the L2(dP⊗ dt)-projections of H and H respectively
on the space Pn of elementary predictable processes, we complete the proof by noting that

E
∫ T

0

∣∣∣ηs − η
s

∣∣∣
2
ds ≤ E

∫ T

0
|Hs −Hs|2 ds. ♦
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We need now some analytical facts that we briefly recall here (see [19] and [2]). First
of all we have the representation

Y t = u(t, St), Ht = (c∗λ∇xu)(t, St) (4.19)

where u is the unique solution in a variational sense (see [2]) of the PDE

(∂t + Lcλ
)u(t, x) + F (t, x, u(t, x)) = 0, u(T, x) = h(T, x), (4.20)

with F (t, x, u(t, x)) = ϑ(t, x)1{u(t,x)=h(t,x)} ((∂t + Lcλ
)h(t, x))

+

where ϑ is a measurable function such that 0 ≤ ϑ ≤ 1. Set Ft(x) := F (t, x, u(t, x)). It fol-
lows from (4.14) that sup

0≤t≤T
sup
x∈Rd

|Ft(x)| ≤ Ch/ε (where Ch is the real constant introduced

in (4.14)). With this notation (4.20) becomes

(∂t + Lc)u(t, x) + Ft(x) = 0, u(T, x) = h(T, x),

in a variational sense. Then, it is a standard fact that u satisfies the mild form of the
above PDE

u(t, x) = P T−t(hT
)(x) +

∫ T

t
P s−t(Fs)(x)ds. (4.21)

We focus now on the semi-group P t. It is well known (see [31]) that under as-
sumption (4.17), P t(x, dy) = p

t
(x, y)dy and for every k ∈ N and every multi-index

α = (α1, . . . , αm)∈ Nm we have

∀x, y∈ Rd, ∀ t ∈ [0, T ],
∣∣∣∂k

t Dα
xp

t
(x, y)

∣∣∣ ≤ Kα,k(1+|x|)qα,k
eKα,kλ

ε
1+k+|α|/2
0

e−C
|x−y|2

t

tk+
|α|+d

2

(4.22)

where Dα
x := ∂α1+···+αm

∂(x1)α1 ···∂(xd)αd
, |α| = α1 + · · · + αd and Kα,k and qα,k are real constants

depending on α, k and C|α| (but not on λ).
One derives some straightforward consequences from this evaluation. First, using that∣∣h

T
(y)

∣∣ ≤ C(1 + |y|), it follows from (4.22) that there exists some constants K and q such
that, for every t∈ (0, T ], x = (x1, . . . , xd)∈ Rd,

∣∣∣∣
∂P t(hT

)
∂xk

(x)
∣∣∣∣ ≤ C

∫

Rd

∣∣∣∣
∂p

t
(x, y)

∂xk

∣∣∣∣ (1 + |y|) dy ≤ K

ε
3/2
0

(1 + |x|)q eKλ

√
t

(4.23)

∣∣∣∣∣
∂2P t(hT

)
∂xk∂x`

(x)

∣∣∣∣∣ ≤ K

ε2
0

(1 + |x|)q eKλ

t
,

∣∣∣∣∣
∂2P t(hT

)
∂t∂xk

(x)

∣∣∣∣∣ ≤
K

ε
5/2
0

(1 + |x|)q eKλ

t3/2
. (4.24)

Similarly, using that ‖F‖∞ ≤ Ch/ε (and changing K for K(Ch ∨ 1)), one gets for Fs(x),

∣∣∣∣
∂P t(Fs)

∂xk
(x)

∣∣∣∣ ≤
K

ε
3/2
0

(1 + |x|)q eKλ

ε

1√
t
,

∣∣∣∣
∂2P t(Fs)
∂xk∂x`

(x)
∣∣∣∣ ≤

K

ε2
0

(1 + |x|)q eKλ

ε

1
t

(4.25)

and ∣∣∣∣
∂2P t(Fs)

∂t∂xk
(x)

∣∣∣∣ ≤
K

ε
5/2
0

(1 + |x|)q eKλ

ε

1
t3/2

. (4.26)
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Lemma 3 Set for every t ∈ [0, T ) and every x ∈ Rd, vk(t, x) := ∂u
∂xk

(t, x), k = 1, . . . , d.
Assume that (4.17) holds.

(i) For every t∈ (0, T ),

|vk(t, x)| ≤ K

ε
3/2
0

(1 + |x|)qeKλ

(
1
ε

+
1√

T − t

)
. (4.27)

(ii) For every t, t′∈ [0, T ),
∣∣vk(t, x)− vk(t′, x)

∣∣ ≤ K

ε
5/2
0

(1 + |x|)q eKλ

ε

(√
|t− t′|+ |t− t′|

(T − t ∨ t′)3/2
)
)

. (4.28)

(iii) Let δ∈ (0, T ), for every t∈ (0, T − δ),

|vk(t, x)− vk(t, x′)| ≤ K

ε2
0

(1 + |x|+ |x′|)q eKλ

ε

((
ε

T − t
+ ln

(
T

δ

))
|x− x′|+

√
δ

)
. (4.29)

Proof: We take derivatives in the mild equation (4.21) for u and we obtain

vk(t, x) =
∂P T−t(hT

)
∂xk

(x) +
∫ T

t

∂P s−t(Fs)
∂xk

(x)ds.

Let us begin by (iii). For every t∈ [0, T ) and every x, x′∈ Rd,

vk(t, x)− vk(t, x′) =
∂P T−t(hT

)
∂xk

(x)− ∂P T−t(hT
)

∂xk
(x′) +

∫ T

t

(
∂P s−t(Fs)

∂xk
(x)− ∂P s−t(Fs)

∂xk
(x′)

)
ds.

Hence, if t∈ [0, T − δ), one derives using (4.24) and (4.25) that

|vk(t, x)− vk(t, x′)| ≤
∣∣∣∣
∂P T−t(hT

)
∂xk

(x)− ∂P T−t(hT
)

∂xk
(x′)

∣∣∣∣ +
∫ T

t+δ

∣∣∣∣
∂P s−t(Fs)

∂xk
(x)− ∂P s−t(Fs)

∂xk
(x′)

∣∣∣∣ds

+
∫ t+δ

t

∣∣∣∣
∂P s−t(Fs)

∂xk
(x)

∣∣∣∣ds +
∫ t+δ

t

∣∣∣∣
∂P s−t(Fs)

∂xk
(x′)

∣∣∣∣ds

≤ K

ε2
0

(1 + |x|+ |x′|)qeKλ

((
1

T − t
+

1
ε

ln
(

T − t

δ

))
|x− x′|+

√
δ

ε

)
.

which yields the second inequality. Claim (i) follows similarly. Let us come to claim (ii).
Assume without loss of generality that t < t′.

vk(t′, x)− vk(t, x) =
∂P T−t′(hT

)
∂xk

(x)− ∂P T−t(hT
)

∂xk
(x) +

∫ T

t′

(
∂P s−t′(Fs)

∂xk
(x)− ∂P s−t(Fs)

∂xk
(x)

)
ds

−
∫ t′

t

∂P s−t(Fs)
∂xk

(x)ds

so that

|vk(t′, x)− vk(t, x)| ≤
∣∣∣∣
∂P T−t(hT

)
∂xk

(x)− ∂P T−t′(hT
)

∂xk
(x)

∣∣∣∣ +
∫ T

t′

∣∣∣∣
∂P s−t(Fs)

∂xk
(x)− ∂P s−t′(Fs)

∂xk
(x)

∣∣∣∣ds

+
∫ t′

t

∣∣∣∣
∂P s−t(Fs)

∂xk
(x)

∣∣∣∣ ds.

Hence, one derives using (4.24) and (4.26) that

|vk(t, x)− vk(t′, x)| ≤ K

ε
5/2
0

(1 + |x|)q eKλ

ε

( |t− t′|
(T − t′)3/2

+
|t− t′|
(T − t′)

+
√
|t− t′|

)
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which completes the proof. ♦

The above lemma and the representation Hx
t = (c∗λ∇xu)(t, Sx

t ) yield

Lemma 4 (a) Let T ′∈ [0, T ] and δ∈ (0, T − T ′]. For every s, t∈ [0, T ′],
(
E |Hx

s −Hx
t |2

)1/2
≤ K(1+|x|)q+1

ε
5/2
0 (T−T ′)

3
2

eKλ

ε

((
2 +

√
T + ln

(
T

δ

))√
|t− s|+

√
δ

)
. (4.30)

(b) Let δ∈ (0, T ). For every s, t∈ [0, T − δ), |t− s| ≤ δ,
(
E |Hx

s −Hx
t |2

)1/2
≤ K

ε
5/2
0

(1 + |x|)q+1 eKλ

ε

(
T + 2

δ

√
|t− s|+

√
δ

)
. (4.31)

Proof: (a) The functions c
λ

are Lipschitz continuous with [c
λ
]Lip ≤ CeCλ and satisfy

‖c
λ
(x)‖ ≤ C(1 + |x|) where the real constant C does not depend on λ, consequently

|c∗
λ
(x)∇xu(t, x)−c∗

λ
(x′)∇xu(t′, x′)| ≤ CeCλ|∇xu(t, x)| |x−x′|+C(1+|x′|)|∇xu(t, x)−∇xu(t′, x′)|.

Combining the bounds obtained in Lemma 3 for the functions vk(t, x) leads to

|c∗
λ
(x)∇xu(t, x)− c∗

λ
(x′)∇xu(t′, x′)|

≤ K

ε
5/2
0

(1 + |x|+ |x′|)q eKλ

ε

((
ε

T − T ′
+

1√
T − T ′

+ ln
(

T

δ

))
|x− x′|+

√
δ +

|t− t′|
(T − T ′)3/2

)

≤ 1
(T − T ′)3/2

K

ε
5/2
0

(1 + |x|+ |x′|)q eKλ

ε

((
2 + ln

(
T

δ

))
|x− x′|+

√
δ + |t− t′|

)
.

Consequently, using Holder Inequality and the 1/2-Holder regularity of t 7→ Sx
t from [0, T ]

into L4(P) (uniformly with respect to λ), one has for every s, t∈ [0, T ],

‖Hx
s −Hx

t ‖2

≤ 1
(T − T ′)3/2

K

ε
5/2
0

‖(1 + |Sx
s |+ |Sx

t |)q‖4

eKλ

ε

((
2 + ln

(
T

δ

))
‖Sx

s − Sx
t ‖4 +

√
δ + |t− s|

)

≤ 1
(T − T ′)3/2

K

ε
5/2
0

(1 + |x|)q eKλ

ε

((
2 +

√
T + ln

(
T

δ

))
(1 + |x|)

√
|t− s|+

√
δ

)
.

(b) Still using the estimates Lemma 3 and, this time, ln(u) ≤ u and |t−t′|
(T−t∨t′)3/2 ≤

√
|t−t′|
δ

yields |c∗
λ
(x)∇xu(t, x) − c∗

λ
(x′)∇xu(t′, x′)|

≤ K

ε
5/2
0

(1 + |x|+ |x′|)q eKλ

ε

((
T + 2

δ

)
|x− x′|+ 2

√
δ

)
.

One concludes the same way round. ♦

Proof of Theorem 6: (a) Using (4.30) (still using the notation q instead of q + 1)

E
∫ T ′

0

∣∣∣Hs − η
s

∣∣∣
2
ds =

∑

tk<T ′
E

∫ tk+1

tk

∣∣∣∣
1

∆tk+1

∫ tk+1

tk

(Hs −Hr)dr

∣∣∣∣
2

ds

≤
∑

tk<T ′

∫ tk+1

tk

1
∆tk+1

∫ tk+1

tk

E |Hs −Hr|2 drds

≤ K2

ε5
0(T − T ′)3

(1 + |s0|)2q e2Kλ

ε2

(
ε + ln

(
T

δ

)
1√
n

+
√

δ

)2

.
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Moreover, as a consequence of the first two lemmas,

E
∫ T ′

0
|c∗(Ss).(Zs − ζs)|2 ds ≤ C

n
+ C (1 + |s0|)2e−Cλ2/T + C ε2

K2(1 + |s0|)2q

ε5
0(T − T ′)3

e2Kλ

ε2

((
2 +

√
T + ln

(
T

δ

))
1√
n

+
√

δ

)2

.

At this stage, we choose our parameters λ, ε and δ, depending on n. We set λn :=√
T
2C lnn, δn := 4/n so that,

(
2 +

√
T + ln

(
T

δn

))
1√
n

+
√

δn ≤ 4 +
√

T + lnn + ln(T/4)√
n

.

Then, set A(T, T ′) := K

ε
5/2
0 (T−T ′)3/2

(1+ |s0|)q and take the regularization parameter ε := εn

such that

ε2
n :=

A(T, T ′)√
C

4 +
√

T + lnn + ln(T/4)√
n

e2Kλn .

Consequently

E
∫ T ′

0
|c∗(Ss)(Zs − ζs)|2 ds ≤ C

n
+ C (1 + |s0|)2e−Cλ2

n/T + 2
√

CA(T, T ′)
4 + lnn + ln(T/4)√

n
e2Kλn

≤ C

n
+

C(1 + |s0|)2√
n

+ CA(T, T ′)
ln n√

n
e2K T

C

√
ln n

≤ C(1 + |s0|)q∨2 K

ε
5/2
0

(1 + (T − T ′)−
3
2 )

e2K T
C

√
ln n

√
n

.

(b) One carries out a similar optimization process, based this time on (4.31). One sets,
for large enough n,

δn := ρn−1/3, ε2
n :=

K

ε5
0

(1 + |s0|)qe2Kλn((T + 2)/ρ +
√

ρ)n−1/6, λn :=

√
T

6C
ln n. ♦

5 Numerical results on American style options

In this section, we present some numerical experiments concerning the pricing and the
hedging of American style options in dimensions d = 2 up to 10. This study will be divided
in two parts. First, we will show how to numerically estimate the spatial accuracy in each
dimension in order to be able to produce a good choice of time and spatial discretization.
Secondly, we will compute some prices and hedges following this choices.

5.1 The model

We specify the underlying asset model (1.1) into a d-dimensional Black & Scholes (B&S)
model, i.e. constant volatilities σ` with constant dividend rates µ`, ` = 1, . . . , d:

dS`
t = (r − µ`)S`

t dt + σ`S
`
t dW `

t , t ∈ [0, T ], ` = 1, . . . , d, (5.32)

where (Wt)t∈[0,T ] denotes a d-dimensional standard Brownian motion. The traded assets
vector are (eµ`tS`

t ), ` = 1, . . . , d, so that the discounted price satisfies (5.32) with r = 0.
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The assets are assumed to be independent for technical reasons: it turns out to be the
worst setting for quantization, so the most appropriate to carry out convincing numerical
experiments.

Beyond its importance for applications, in the of B&S model St is a closed function of
(t,Wt) since S`

t = s`
0 exp ((r − (µ` + σ2

` /2))t + σ`W
`
t ). Therefore, one can either implement

a quantization tree for (St)t∈[0,T ] or for (Wt)t∈[0,T ]. Although the payoffs functions are,
stricto sensu, no longer Lipschitz continuous as functions of W , we chose the second
approach because of its universality: an optimal quantization of the Brownian motion can
be achieved very accurately once for all and then stored off line. Indeed, the Brownian
quantization is made of optimal quantizations of the d-dim standard Normal distributions
by appropriate dilatations (see Figure 1) which are actually stored with all their companion
parameters for a wide range of sizes (see [39]).

We focus on American style “geometric” exchange options which payoffs read

h(ξ) = max
(
ξ1 · · · ξp − ξp+1 · · · ξ2p, 0

)
with d := 2p. (5.33)

It follows from the pricing formula (1.5) that the European and American premia for
exchange options do not depend upon the interest rate r so we can set r = 0 w.l.g. An
important remark is that there exists a closed form for the Black & Scholes premium of a
European exchange option with maturity T at time t given by

ExBS (θ, ξ, ξ′, σ̃, µ) := erf(d1) exp(µθ) ξ − erf(d1 − σ̃
√

θ) ξ′,

d1(ξ, ξ′, σ̃, θ, µ) :=
ln(ξ/ξ′) + (σ̃2/2 + µ)θ

σ̃
√

θ
and erf(ξ) :=

∫ ξ

−∞
e−

u2

2
du√
2π

with θ := T − t, σ̃ :=

(
d∑

`=1

σ2
`

)1/2

, µ :=
p∑

`=1

µ`−
d∑

`=p+1

µ`, ξ :=
p∏

`=1

S`
t , ξ′ =

d∏

`=p+1

S`
t . (5.34)

We will also use some American geometric put payoffs:

h(ξ1, . . . , ξd) :=
(

K −
(
ξ1 · · · ξd

)1/d
)

+

.

In this case, the explicit formulæ for the European Put with strike K and maturity T at
time t (with µi = 0 and σi = σ, i = 1, . . . , d) reads

PBS (θ, K, ξ, σ, r) := erf(−d2 + σ
√

θ/d) exp(−rθ)K − erf(−d2) ξ, (5.35)

d2(K, ξ, σ, θ, r) :=
ln(ξ/K) + (r + σ2/(2d))θ

σ
√

θ/d
,

where θ = T − t and ξ =

(
d∏

i=1

Si
t

)1/d

exp
(
−σ2(d− 1)

2d

)
.

5.2 Specification of the numerical scheme

Let us specify now the implemented numerical scheme. As mentioned above, our approach
to pricing consists first in quantizing the d-dim Brownian motion W . More precisely, let
T > 0 and n, N two integers; set ∆t := T

n and tk := k∆t. Spatial discretization depends
on the time tk. We use the optimized dispatching rule (2.38) “size” to the Nk-quantizer
of time tk so that N0 = 1, N ≤ 1 + N1 + N2 + · · · + Nn ≤ N + n. First, we compute
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for every k∈ {1, . . . , n} an optimal (quadratic) Nk-quantizer of N (0; Id) by processing a
CLV Q algorithm (2.21) (the final converging phase is refined using a randomized version
of the so-called Lloyd I fixed point procedure, see e.g. [26]). For further details about the
implementation, see [39]. As a second step, we get the optimal Nk-quantizer (xk

i )i=1,...,Nk
of

Wtk by a
√

tk-dilatation. All the companion parameters (weights pk
i , pk

ij , L2-quantization
errors) are then estimated by a standard Monte Carlo simulation. Note that all these
quantities are universal objects that can be kept off line, once computed accurately enough.

In this very particular but important case, we only need the original CLVQ algorithm
defined by (2.22) and (2.23), not its extended version developed for general diffusions.

Finally, the quantization tree algorithm (2.12) reads




vn
i := hn

i , i = 1, . . . , Nn,

vk
i := max

(
hk

i ,
∑

1≤j≤Nk+1
πk

ij vk+1
j

)
, i = 1, . . . , Nk, k = 0, . . . , n− 1

(5.36)

where the obstacle is given by

hk
i := h(sk,1

i , . . . , sk,d
i ) with sk,`

i := s`
0 exp

(
−

(
µ` +

σ2
`

2

)
k∆t + σ` xk

i

)
, ` = 1, . . . , d,

and the weights πk
ij are Monte-Carlo proxies of the theoretical weights i.e.

πk
ij :=

P(Wtk+1
∈ Cj(xk+1),Wtk ∈ Ci(xk))
P(Wtk ∈ Ci(xk))

.

(About the error induced by the Monte Carlo approximation, see [4] and [1]). Follow-
ing (3.15) the hedging δk

i at xk
i is then computed by

δk,`
i :=

Nk+1∑

j=1

πk
ij(v

k+1
j − vk

i )(eµ`tk+1sk+1
j,` − eµ`tksk

i )

Nk+1∑

j=1

πk
ij(e

µ`tk+1sk+1,`
j − eµ`tksk,`

i )2
, ` = 1, . . . , d. (5.37)

In practice, we often need to introduce in the quantization tree algorithm a sequence
of “control variate variables”. This is usually achieved by considering a FS

tk
-martingale

Mtk := m(tk, Stk) where the function m is explicitly known.

Then one sets M i
k := m(tk, sk

i ) so that the (explicit) sequence (Mk
i )1≤i≤Nk,1≤k≤n, i.e.

approximately satisfies:
Nk+1∑

j=1

πk
ij Mk+1

j ≈ Mk
i . (5.38)

The approximation comes from the spatial discretization by quantization (in fact if the
equality did hold it would be of no numerical interest). Here, an efficient choice is to take

Mk
i = ExBS (T − tk,

p∏

`=1

sk,`
i ,

d∏

`=p+1

sk,`
i , σ̃, µ). (5.39)

Then, we use the following proxy for the premium of the American payoff (h(tk, Stk))0≤k≤n

Premiumh(tk, sk
i ) := m(tk, sk

i ) + vh−m,k
i (5.40)
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where (vh−m,k
i )1≤k≤n is obtained by the scheme (5.36) with the obstacle (hi

k−m(tk, sk
i ))1≤k≤n.

Let us emphasize that “control variate variables” (Mk
i ) such that (5.38) holds exactly

is useless in practice since in this case it is not difficult to see that

∀ i, k, vh−m,k
i = vh,k

i −Mk
i .

5.3 Numerical accuracy, stability

We will now estimate numerically the rate of convergence (at time t = 0) of the numeri-
cal premium p(n, N̄) := Premiumh(0, s0) given by (5.36) using (5.40) towards a reference
pth as a function of (n, N̄) where N̄ := N/n (average number of points per layer). The
reference premium pth is obtained by a finite difference method for vanilla American put
options in 1-dimension and derived from a 2-dimensional difference method due to Vil-
leneuve & Zanette in higher dimensions (see [42]). The error terms both in time and in
space given by Theorem 4 are

E(n, N̄) = |p(n, N̄)− pth| ≈ c1

n
+ c2

n

N̄α
with α = 1/d (5.41)

for semi-convex payoffs. Two questions are raised by this error bound:
– are these rates optimal?
– Is it possible to compute an optimal number nopt of time steps to minimize the global

error?
We are able to answer to the first one: we compute by c1 and C2 := c2N̄

−α by nonlinear
regression of the function n 7→ E(n, N̄) for several fixed values of N and n.

We begin by the 1 and 2-dimension settings. The specifications of the reference
model (5.32) are (d = 1, vanilla put, r = 0.06, σ = 0.2, S0 = 36, K = 40) and (ex-
change, d = 2, σ = 0.2, µ = −0.05, S1

0 =
√

40, S2
0 =

√
36).

In Table 1 are displayed numerical approximations of c1, C2 and

αi :=
ln(C2(N̄i+1)/C2(N̄i))

ln(N̄i/N̄i+1)
, i = 1, 2, 3.

Note first that c1 does not depend upon N̄ : this confirms the above global error struc-
ture (5.41). These empirical values for α are closer to 2/d than the theoretical 1/d and
strongly suggests that α = 2/d is the true order. This can be explained by the following
heuristics: in the linear case (e.g. a European option computed by a descent of the quan-
tization tree algorithm), the semi-group of the diffusion quickly regularizes the premium.
Then, the second order numerical integration formula by quantization applies: let X be
a square integrable random variable, x an optimal quadratic N -quantizer; if f admits a
Lipschitz continuous differential Df , then (see [38])

|Ef(X)−
∑

1≤i≤N

P(X̂x =xi)f(xi)−
∑

1≤i≤N

Df(xi).E((X−xi)1Ci(x))︸ ︷︷ ︸
= 0 since x is optimal

| ≤ [Df ]Lip‖X−X̂x‖2
2
, (5.42)

where ‖X− X̂x‖2
2

= cX N−2/d +o(N−2/d) as N →∞. The optimality of x makes the term

E((X − xi) 1Ci(x)(X)) = −1
2

∂‖X− bXx‖2
2

∂xi
vanish. Applying rigorously this idea to American

option pricing remains an open question (however see [6]). Whatsoever this better rate of
convergence is a strong argument in favor of optimal quantization.

From dimension 4 to 10, the storage of the matrix [πk
ij ] for increasing values of N̄ and

large n is costly and make the computations intractable. The above computations suggest
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a spatial order of 2/d when the grids are optimal. In fact, true optimal quantizers become
harder and harder to obtain in higher dimensions, that is why we verify that spatial order
becomes closer and closer to 1/d rather than 2/d.

Several answers to the second question are possible according to the variables used in
the error bound. Here, we chose to compute nopt as a function of N̄ and n (rather than N
and n). For a given value of N̄ , one proceeds as above a nonlinear regression that yields
numerical values for c1 and C2 := c2N̄

−1/d. Finally set

nopt(d, N̄) :=
√

c1

C2
.

In lower dimension (d ≤ 3), the order α can be estimated and one may set directly for
every N̄ , nopt(d, N̄) =

√
c1
c2

N̄1/d. In Table 2 are displayed the numerical values.

5.4 Numerical results for American style options

We now present numerical computations for American geometric exchange functions based
on the model described in Section 5.1. Namely, we present the premia of in- and out-of-the
money options as functions of the maturity T (expressed in year), T ∈ { k

n , 0 ≤ k ≤ n}.
This distinction gives an insight about the numerical influence of the free boundary.

We first settle the value of N̄ and then read on Table 2 the optimal number n =
nopt(d, N̄) of time steps. Space discretization is the one used for the above numerical
experiments. The model parameters and initial data are settled so that µ and σ̃ remain
constant, equal to −5% and 20% respectively in (5.34):

µ1 := −5, µi := 0, i = 2, . . . , d, σi := 20/
√

d, i = 1, . . . , d, .

si
0 := 402/d, i = 1, . . . , d/2, si

0 := 362/d, i = d/2 + 1, . . . , d (in-the-money),

si
0 := 362/d, i = 1, . . . , d/2, si

0 := 402/d, i = d/2 + 1, . . . , d (out-of-the-money).

In Figure 2 are displayed the computed premia a) and hedges b) in 2-dimension at
time t = 0 together with the reference ones as a function of the maturity T ∈ [0, Tmax] for
Tmax = 1. Figure 2 emphasizes that both premia and hedges in 2-dimension are very well
fitted with the reference premium. It also holds true in the Out-of-the-money case (not
depicted here).

In general, in the In-the-money case, we can see on Figure 3(a) and Table 3 that the
computed premium tends to overestimate the reference one when the maturity grows.
This phenomenon grows also when the dimension d increases. However, the maximal
error remains within 3,5 % in all the cases as displayed in Table 3. The same phenomenon
occurs for the computed hedges, within a similar range (hedges are not depicted here).
In the Out-of-the-money setting, we can see on Figure 3(b) that very different behaviors
are observed on the premia. Indeed whatever the dimension is (from 4 to 10), the premia
seem to be well computed (dimension other than 4 are not depicted here). Figure 4
depicts the quantized residual risk (at t = 0) as a function of the maturity. It suggests
that numerical incompleteness of the market has a bigger impact “in-the-money” than
“out-of-the-money”.

We will now test the influence of the European premium when used as a “control variate
variable” in the simulations. To this aim, we will price American puts on a geometrical
index in dimension d = 5. The model parameters and initial data are

µi = 0, si
0 = 100, σi = 20%, i = 1, . . . , d,
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and
r = ln(1.1), K = 100.

This choice is motivated by the fact that then the European premium is significantly
lower the American premium. The reference prices and hedges are computed using a
BBSR algorithm (see [12]) with 1000 time steps in dimension 1 with

s0,eq = 100, σeq = σ1/
√

d, δeq =
σ2

1(d− 1)
2d

,

where s0,eq, σeq and δeq are the “1d-equivalent”s spot, volatility and dividend rate. The
quantized prices are still computed using (5.40) and algorithm (5.36) where the “control
variate variable” is known by (5.35) and the hedges are computed using (5.37).

Table 4 shows the price and hedges computed for (n,Nmax) = (10, 2800). We can see
that the price error is 0.5% and the sum of the hedge errors of each components is 0.8%.

Now, Figure 5 shows the influence of the European “control variate variable” (5.35).
We have plotted the American premium computed following (5.35), (5.36) and (5.40) for an
“optimal” time and space discretization found in Table 4, namely (n,Nmax) = (10, 2800).
We can see that the European premium counts for a little part in the American one. Here
we can see that the quantization is able to capture by itself a significant part of the price
as the maturity T varies in [0, 1].
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Table 1: Estimation of the spatial convergence exponent α of (5.41) in dimensions d = 1, 2.

d = 1 d = 2
N̄i N̄1 = 20 N̄2 = 30 N̄3 = 40 N̄4 = 60 N̄1 = 235 N̄2 = 455
c1 0.47 0.45 0.45 0.46 3.54(-1) 3.41(-1)
C2 3.77(-3) 1.82(-3) 1.03(-3) 4.79(-4) 6.61(-4) 3.55(-4)
αi 1.87 1.90 1.91 × 0.89 ×

Table 2: Estimation of the optimal number of time steps for d = 1, 2, 4, 6, 10.

d = 1 d = 2 d = 4, N̄ = 750 d = 6, N̄ = 1000 d = 10, N̄ = 1000
c1 0.45 0.35 8.84(-1) 1.46 2.10
c2 1.12 2.05(-1) × × ×
C2 × × 2.62(-3) 2.57(-3) 8.75(-4)
nopt 0.63 N̄ 1.31 N̄1/2 19 24 50
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Table 3: American premium & relative error for different maturities and dimensions.

Maturity 3 months 6 months 9 months 12 months
AMref 4.4110 4.8969 5.2823 5.6501

Price Error (%) Price Error (%) Price Error (%) Price Error (%)
d = 2 4.4111 0.0023 4.8971 0.0041 5.2826 0.0057 5.6505 0.0071
d = 4 4.4076 0.08 4.9169 0.34 5.3284 0.82 5.7366 1.39
d = 6 4.4156 0.1 4.9276 0.63 5.3550 1.38 5.7834 2.20
d = 10 4.4317 0.47 4.9945 2.00 5.4350 2.89 5.8496 3.53

Table 4: Value of an American put at time t = 0 and the hedging strategy on a geometrical
index in dimension 5 for maturity T = 1, σi = 0.2, r = ln(1.1), si

0 = 100 = K, i = 1, . . . , 5.

n Nmax AM Qtf. BBSR δi Qtf. BBSR
10 2800 1.576 1.584 -0.0739 -0.0779 -0.0750 -0.0751 -0.0789 -0.0756

Figure 1: A 500-tuple with its Voronoi tessellation with the lowest quadratic quantization error
for the bi-variate normal distribution.
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Figure 2: d = 2, n = 25 and N̄ = 300. American premium as a function of the maturity: a);
Hedging strategy on the first asset: b). The cross + depicts the premium obtained with the method
of quantization and – depicts the reference premium (V & Z) (cf. [42]).
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Figure 3: d = 4. In-the-money: (a); Out-of-the-money: (b). American premium as a function of
the maturity. + depicts the premium obtained with the method of quantization and – depicts the
reference premium (V & Z) (cf. [42]).
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Figure 4: Quantized local residual risk |∆R̂n
t1 |2 as a function of the maturity in 4-dimension with

n = 20, N = 750 (see Table 2) (see the definition of local residual risk in (3.10) computed owing
to (3.16) in the “In-the-money” case (solid line) and “Out-of-the-money” case (dash line)
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Figure 5: American Put premium on a geometrical index in dimension 5 as a function of maturity.
Here, si

0 = 100, σi = 0.2, r = ln(1.1) and K = 100. Time and space discretization are (n,Nmax) =
(10, 2800). The bold line depicts the reference price computed by a BBSR 1d–algorithm, the thin
line depicts the European premium (i.e. the “control variate variable”) and the points depict the
quantized American Premium at each time step.
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