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Introdu
tionLet (Ω,A, P) be probability spa
e, and E a re�exive Bana
h spa
e. The norm on E is denoted | · |.The quantization of a random variable X , taking its values in E 
onsists in its approximation bya random variable Y taking �nitely many values. The resulting error of this dis
retization is the Lpnorm of |X − Y |. Minimizing this error, with a �xed maximum 
ardinal of Y (Ω) yields the followingminimization problem:
min {‖X − Y ‖p, Y : Ω → E measurable , card(Y (Ω)) ≤ N} . (1)This problem, was �rst 
onsidered for signal transmission and 
ompression issues. More re
ently, quan-tization has been introdu
ed in numeri
al probability, to devise quadrature methods [16℄, solving multi-dimensional sto
hasti
 
ontrol problems [2℄ and for varian
e redu
tion [4℄. Sin
e the 2000's, the in�nitedimensional setting has been investigated from both theoreti
al an numeri
al viewpoint, espe
ially in thequadrati
 
ase [12℄. One elementary property of a L2 optimal quantizer is the stationarity: E[X |Y ] = Y.If X is a bi-measurable sto
hasti
 pro
ess on [0, T ] verifying ∫ T

0
E[|Xt|2]dt < ∞, it 
an be 
onsideredas a random variable valued in the Hilbert spa
e H = L2([0, T ]). In [12℄, it is shown that in the 
enteredGaussian 
ase, linear subspa
es U of H spanned by N -stationary quantizers 
orrespond to prin
ipal
omponents of X , in other words, are spanned by eigenve
tors of the 
ovarian
e operator of X . Thus,the quantization 
onsists �rst in exploiting its Karhunen-Loève de
omposition (eX

n , λX
n

)

n≥1
.If dX(N) is the dimension of the subspa
e of L2([0, T ]) spanned by Y (Ω), the quantization error

eN (Y ) writes
eN(X)2 =

∑

j≥m+1

λX
j + eN





m⊗

j=1

N (0, λX
j )





2 for m ≥ dN (X). (2)
eN(X)2 <

∑

j≥m+1

λX
j + eN





m⊗

j=1

N (0, λX
j )





2 for 1 ≤ m < dN (X). (3)The de
omposition is �rst trun
ated at a �xed order m and then the R
m-value Gaussian ve
tor
onstituted of the m �rst 
oordinates of the pro
ess on its Karhunen-Loève de
omposition is quantized.To rea
h optimal quantization, we have both to determine the optimal rank of trun
ation dX(N) (thequantization dimension) and to determine the optimal dX(N)-dimensional Gaussian quantizer 
orre-sponding to the �rst 
oordinates, dX(N)⊗

j=1

N (0, λX
j ). Usual examples of su
h pro
esses are the standardBrownian motion on [0, T ], the standard Brownian bridge on [0, T ], the fra
tional Brownian motion andthe fra
tional Ornstein-Uhlenbe
k pro
ess.We 
an also 
hoose to use a produ
t quantization of m⊗

j=1

N (0, λX
j ). The produ
t quantization isthe 
artesian produ
t of the optimal quantizers of the standard one-dimensional Gaussian distributions

N
(
0, λX

i

)

1≤i≤dX (N)
. In the 
ase of independent marginals, this yields a stationary quantizer. Oneadvantage of this method is that the one-dimensional Gaussian quantization is a fast pro
edure. Newton-Raphson methods 
onverge very fast to the optimal quantization (see [18℄). Moreover, a sharply optimizeddatabase of quantizers of standard univariate and multivariate Gaussian distributions is available on theweb site www.quantize.maths-fi.
om [19℄ for download. Still, we have to determine quantization size onea
h dimension to obtain optimal produ
t quantization. In this 
ase, the minimization of the distorsion(2) 
omes to:

min







d∑

n=1

λX
n min

RNn

‖ξ − ξ̃(Nn)‖2
2 +

∑

n≥d+1

λX
n , N1 × · · · × Nd ≤ N, d ≥ 1






. (4)A solution of (4) is 
alled an optimal K-L produ
t quantizer. This problem 
an be solved by the "blindoptimization pro
edure", whi
h 
onsists in 
omputing the 
riterium for every possible de
omposition

N1 × · · · × Nd with N1 ≥ · · · ≥ Nd. The result of this pro
edure 
an be kept o�-line for a future use.2



Optimal de
ompositions for a wide range of values of N for both Brownian motion and Brownian bridgeare available on the web site www.quantize.maths-fi.
om [19℄.In [12℄, the rate of 
onvergen
e to zero of the quantization error is investigated. A 
omplete solutionis provided for the 
ase of Gaussian pro
esses with regular varying eigenvalues. Rates of 
onvergen
eare available for the above 
ited examples of Gaussian pro
esses. The asymptoti
 of the quantizationdimension dX(N) are investigated in [13℄. The following theorem 
ombines these results:Theorem 0.1 (Fun
tional quantization asymptoti
s). Let X be a 
entered Gaussian pro
ess on [0, T ]with Karhunen-Loève system (eX
n , λX

n )n≥1. Let (YN )N≥1 be a sequen
e of quadrati
 optimal N−quantizersfor X. We assume that
λX

n ∼ κ

nb
as n → ∞ (b > 1).We have:

• span(YN (Ω)) = span
{

eX
1 , · · · , eX

dX(N)

} and dX(N) = Ω(log N).
• eN(X) = ‖X − YN‖2 ∼ √

κ
√

bb(b − 1)−1(2 log N)−
b−1

2A 
onje
ture is dX(N) ∼ 2
b log(N).It is shown in [12℄ that the Karhunen-Loève eigenvalues of the fra
tional Brownian motion, (λBH

n )n≥1verify
λBH

n ∼ 1

n2H+1
as n → ∞,thus the fra
tional Brownian motion sati�es the hypothesis of theorem 0.1.In a 
onstru
tive viewpoint, the numeri
al 
omputation of the optimal quantization or the optimal prod-u
t quantization requires a numeri
al evaluation of the Karhunen-Loève eigenfun
tions and eigenvalues,at least the very �rst terms. (As seen in theorem 0.1, the quantization dimension of usual Gaussianpro
esses in
reases asymptoti
ally as the logarithm of the size of the quantizer, so it is most likely that itis small. For instan
e, the quantization dimension dW (N) of the Brownian motion with N = 10000 is 9.)The Karhunen-Loève de
omposition of some usual Gaussian pro
esses have a 
losed-form expression. Itis the 
ase of the standard Brownian motion, the Brownian bridge and the Ornstein-Uhlenbe
k pro
ess.(The spe
ial 
ase of the Ornstein-Uhlenbe
k pro
ess is derived in [4℄).1. The Brownian motion (Wt)t∈[0,T ],

eW
n (t) :=

√

2

T
sin

(

π(n − 1/2)
t

T

)

, λW
n :=

(
T

π(n − 1/2)

)2

, n ≥ 1. (5)2. The Brownian bridge on [0, T ],
eB

n (t) :=

√

2

T
sin

(

πn
t

T

)

, λB
n :=

(
T

πn

)2

, n ≥ 1. (6)3. The Ornstein-Uhlenbe
k pro
ess on [0, T ], starting from 0, de�ned by the SDE drt = θ(mu− rt)dt+σdWt,with σ ≥ 0, θ > 0 and W a standard Brownian motion on [0, T ].
eOU

n (t) :=




1

√
T

2
−

sin(2ωλn
T )

4ωλn



 sin(ωλnt), λOU
n :=

σ2

ω2
λn

+ θ2
, n ≥ 1, (7)where ωλn are the (sorted) stri
tly positive solutions of the equation

θ sin(ωλnT ) + ωλn cos(ωλnT ) = 0.4. The stationary Ornstein-Uhlenbe
k pro
ess on [0, T ], de�ned by the same SDE with r0 ∼ N (0, σ0).
eOU

n (t) := Cn (ωλn cos(ωλnt) + θ sin(ωλnt)) , λOU
n :=

σ2

ω2
λn

+ θ2
, n ≥ 1, (8)where ωλn are the (sorted) stri
tly positive solutions of the equation

2θω cos(ωλnT ) + (θ2
− ω2

λn
) sin(ωλnT ) = 0,3



and
1

C2
n

=
θ

2
(1 − cos(2ωλnT )) +

ωλn

2

(

T +
sin(2ωλnT )

2ωλn

)

+
θ2

2

(

T −
sin(2ωλnT )

2ωλn

)

.In a more general setting, we do not have a 
losed-form expression for the Karhunen-Loève de
om-position. For instan
e, as far as we know, the K-L expansion of the fra
tional Brownian motion is notknown. Hen
e, a numeri
al method to evaluate �rst Karhunen-Loève eigenfun
tions is the "missing link"on the path to the 
onstru
tive optimal quantization of more Gaussian pro
esses.However, we 
an derive rate-optimal quantization of Gaussian pro
esses using other series expansionsas proposed by Lus
hgy and Pages in [14, 17℄. In this setting, the 
ase of the fra
tional Brownian motion
an be derived using a rate-optimal series expansion proved by Dzhaparidze and van Zanten in [7, 8℄.Other 
onstru
tive approa
hes for fun
tional quantization are proposed by Wilbertz in [21℄.In this arti
le, we experiment the so-
alled "Nyström method" [1, 5, 20℄ for approximating thesolution of the fun
tional eigenvalue problem whi
h de�nes the Karhunen-Loève de
omposition. First,we 
ompare the result of the the numeri
al method with the 
losed-forms available for the Brownianmotion, the Brownian bridge and the Ornstein-Uhlenbe
k pro
ess. Then, the spe
ial 
ase of the fun
tionalquantization of the fra
tional Brownian motion is handled.Fun
tional quantization of Gaussian pro
esses have numerous appli
ations in numeri
al probability.In [4℄, a varian
e redu
tion method based on the fun
tional quantization of a Gaussian pro
ess wasproposed. This method 
an be seen as a "Guided Monte-Carlo simulation" (see �gure 8). Still, itwas only appli
able with Gaussian pro
esses for whi
h we 
ould have a numeri
al evaluation of theKarhunen-Loève eigenfun
tions. Su
h a varian
e redu
tion method would be of high interest in Monte-Carlo simulations implying the fra
tional Brownian motion be
ause its simulation s
hemes have a high
omplexity.Subsequently, we test this "fun
tional strati�
ation" varian
e redu
tion algorithm in option pri
ingproblems within the fra
tional Brownian motion's 
ounterpart of the 
lassi
al Bla
k and S
holes model.First, the 
ase of a Vanilla option is ben
hmarked with the 
losed-form expression available in this 
ase.Then the 
ase of dis
rete barrier options is tested.1 The Nyström methodLet X be a bi-measurable Gaussian sto
hasti
 pro
ess on [0, T ] de�ned on the probability spa
e (Ω,A, P).We assume that ∫
[0,T ]

E[X2
s ]ds < ∞. Let us denote ΓX(t, s) the 
ovarian
e fun
tion of X de�ned by

ΓX(t, s) = cov(Xt, Xs). The 
ovarian
e operator CX of X is de�ned by CXf =
∫

[0,T ]
ΓX(·, s)f(s)dt.It is a symmetri
 positive tra
e 
lass operator on L2[0, T ]. The Karhunen-Loève basis asso
iated with

X , denoted (eX
n )n≥1 is the Hilbert basis of L2[0, T ] 
onstituted with eigenve
tors of CX with de
reasingeigenvalues. Now, we aim to solve numeri
ally the eigenvalue problem

∫ T

0

ΓX(·, s)fk(s)ds = λkfk, k ≥ 1. (9)The Nyström method requires the 
hoi
e of some quadrature rule ∫ T

0
f(s)ds ∼

n∑

i=1

wjf(sj). (wj)1≤j≤n isthe sequen
e of the weights of the quadrature rule, while (sj)1≤j≤n are the abs
issas where f is evaluated.If we introdu
e this quadrature rule in equation (9), we get
n∑

j=1

wjΓX(t, sj)fk(sj) = λkfk(t) t ∈ [0, T ]. (10)Evaluating equation (10) at the quadrature points yields
n∑

j=1

wjΓX(ti, sj)fk(sj) = λkfk(ti) i ∈ {1, · · · , n}. (11)
4



Let f be the ve
tor  fk(t1)...
fk(tn)




, ((Kij))1≤i,j≤n the matrix ((ΓX(ti, sj)))1≤i,j≤n, λ = (diag(λk))k=1···nand de�ne K̃ij = Kijwj . Then the eigenvalue problem be
omes

K̃f = λf. (12)Hen
e, within this approximation, the fun
tional eigenvalue problem turns into a matrix eigenvalueproblem. As K is a 
ovarian
e matrix, it is symmetri
. However, sin
e the weights are not equal for mostquadrature rules, the matrix K̃ is not symmetri
. As outlined in [20℄, numeri
al methods for matrixorthogonalization are mu
h simpler in the symmetri
 
ase. As a 
onsequen
e, we should restore thesymmetry if possible. The method proposed in [20℄ is the following:We de�ne the diagonal matrix D = diag(wj) and its square root D1/2 = diag(√wj). Then equation(12) be
omes
K · D · f = λf. (13)Multiplying by D1/2, we get

(

D1/2 · K · D1/2
)

· h = λh, where h = D1/2 · f. (14)Equation (14) is now in the form of a symmetri
 eigenvalue problem. For square-integrable kernels(we stand in this 
ase), this provides a good approximation of the n highest eigenvalues.1.1 Choi
e of the quadrature methodClassi
al numeri
al methods for real symmetri
 matrix diagonalization are
• The Ja
obi transformation for symmetri
 diagonalization.
• A tridiagonalization (by Givens or Householder redu
tion) followed by a QL algorithm with impli
itshifts.All these numeri
al methods have a O(n3) 
omplexity. As a 
onsequen
e, the natural 
hoi
e for thequadrature method would be the highest order possible (A high order Bode's formula, or a Gaussianquadrature).However as pointed out in [11℄, the Nyström method asso
iated with the trapezoidal integration ruleadmits an asymptoti
 error expansion in even powers of the step sizes as soon as the 
ovarian
e fun
tionis di�erentiable (or 
ontinuous and pie
ewise di�erentiable). As a 
onsequen
e, instead of using the highorder integration rule, we prefer to use a Ri
hardson-Romberg extrapolation on the result of the wholepro
edure with the trapezoidal quadrature formula. We 
ould rea
h an a

ura
y whi
h approa
hes thema
hine roundo� error on the �rst eigenvalues when we ben
hmark this method on the Brownian motion,the Brownian bridge or the Ornstein-Uhlenbe
k pro
ess. Another argument for the trapezoidal rule isthat we en
ountered some small instabilities on the eigenfun
tion evaluation when using higher orders
hemes.1.2 Choi
e of the interpolation methodThe natural 
hoi
e is to use equation (10) as an interpolation method for evaluating fk,

fk(t) =
1

λk

n∑

j=1

wjK(t, sj)fk(sj). (15)The same Ri
hardson-Romberg extrapolation 
an be performed between the values of n∑

j=1

wjK(t, sj)fk(sj)with the di�erent orders n to 
ompute this integral. The result is then divided by the extrapolated valueof λk.A remark on the interpolation method 5



One purpose of the quantization of a Gaussian pro
ess X , is to perform a quantization of a di�usionwith respe
t X , as soon as su
h a sto
hasti
 integral 
an be de�ned. We 
an obtain a quantizer ofthe di�usion by inserting the quantizer of the Gaussian pro
ess in the di�usion equation written inthe Stratonovi
h sense. The most a

omplished study on this subje
t is [15℄. In this 
ase, we mayalso need a numeri
al approximation of the time-derivative of the eigenfun
tion in the Karhunen-Loèvede
omposition. This work is mostly spe
i�
 to the Brownian motion but main results remain valid for
ontinuous semi-martingales that satisfy the Kolmogorov 
riteria as the Brownian bridge and Ornstein-Uhlenbe
k pro
esses.Still, a future work 
ould be to extend these results to di�usions with respe
t to the fra
tionalBrownian motion and other related pro
esses. If ΓX is (weakly) di�erentiable, a natural evaluationmethod for the derivative would be f ′
k(t) = 1

λk

n∑

j=1

wj∂1ΓX(t, sj)fk(sj).One problem is that this method yields an irregular derivative. For example, this yields a pie
ewise
onstant derivative in the 
ase of the Brownian motion. This 
auses instabilities problems when usingRunge-Kutta integration methods for ordinary di�erential equations, whi
h rely on the regularity of the
onsidered Cau
hy problem.As a 
onsequen
e, a more regular interpolation method 
an give more satisfa
tory results when dealingwith di�usions. (Spline or rational interpolation methods for instan
e.)2 Ben
hmark on known Karhunen-Loève expansionsIn this se
tion, we 
ompare the numeri
al results obtained with the Nyström methods in 
ases wherewe have 
losed-form expression of the Karhunen-Loève expansion. The multi-steps Ri
hardson-Rombergextrapolation 
onsists in using the asymptoti
 error estimate of the method
V = un +

K1

n2
+

K2

n4
+ · · · + O

(
1

n2p

)

.Writing this expression for p di�erent values of n allows us to solve a p × p linear system to nullify the
p − 1 �rst orders of 
onvergen
e. The three-steps Ri
hardson-Romberg extrapolation with n = p, n = land n = k gives the following solution :

Ukk4(m2 − l2) + Ull
4(k2 − m2) + Umm4(l2 − k2)

(m2 − l2)(l2m2 + k4 − m2k2 − l2k2)
.This result is naturally invariant by any permutation of the 
oe�
ients (k, m, l). We experien
ed lessa

urate results when using higher order Ri
hardson-Romberg extrapolation, so we will settle for athree-steps extrapolation.2.1 Eigenvalues a

ura
yIn tables 1 and 2, Karhunen-Loève eigenvalues of the Brownian motion and of the Brownian bridge on

[0, 1] are reported. Table 3 deals with the stationary Ornstein-Uhlenbe
k on [0, 1] de�ned by the SDE
drt = −θrtdt + σdWt, r0 ∼ N

(

0,
1

2

)

. (16)First 
olumn gives the theoreti
al value given by the 
losed-form. Following 
olumns give the value
omputed with the Nyström method with a regular step size with 25, 50 and 100 points. Last 
olumngives the absolute error of a 3 steps Ri
hardson-Romberg extrapolation method between n = 25, n = 50and n = 100.With regard to the above numeri
al results, Nyström method yields a satisfa
tory a

ura
y forperforming fun
tional quantization of these pro
esses.2.2 Eigenfun
tions a

ura
yWe now 
ompare the 
losed-form expression of the eigenfun
tion with the approximation obtained by"Ri
hardson-Romberg extrapolated trapezoidal Nyström method". In table 4, we report the highest6



Trapezoidal Trapezoidal Trapezoidal Trapezoidal NyströmClosed-form Nyström Nyström Nyström 25 − 50 − 100 Ri
hardson-Romberg
25 points 50 points 100 points absolute error

0.405284735 0.405418094 0.405318070 0.405293068 6.3727e−14
0.0450316372 0.0451652077 0.0450649853 0.0450399714 5.2269e−12
0.0162113894 0.0163453833 0.0162447639 0.0162197259 4.0448e−11
0.00827111703 0.00840574996 0.00830453112 0.00827945541 1.5607e−10
0.00500351524 0.00513900777 0.00503698224 0.00501185691 4.2896e−10Figure 1: Re
ord of the 5 highest eigenvalues of the Karhunen-Loève de
omposition of the Brownianmotion. Trapezoidal Trapezoidal Trapezoidal Trapezoidal NyströmClosed-form Nyström Nyström Nyström 25 − 50 − 100 Ri
hardson-Romberg

25 points 50 points 100 points absolute error
0.101321184 0.101454622 0.101354524 0.101329517 1.0314e−12
0.0253302959 0.0254640514 0.0253636556 0.0253386309 1.6540e−11
0.0112579093 0.0113921955 0.0112913019 0.0112662463 8.4041e−11
0.00633257398 0.00646760876 0.00636601285 0.00634091389 2.6697e−10
0.00405284735 0.00418885438 0.00408634582 0.00406119097 6.5608e−10Figure 2: Re
ord of the 5 highest eigenvalues of the Karhunen-Loève de
omposition of the Brownianbridge. Trapezoidal Trapezoidal Trapezoidal Trapezoidal NyströmClosed-form Nyström Nyström Nyström 25 − 50 − 100 Ri
hardson-Romberg

25 points 50 points 100 points absolute error
0.369405405 0.369395812 0.369403011 0.369404807 2.7645e−13
0.0690018877 0.0690750142 0.0690201680 0.0690064577 2.0265e−12
0.0225442436 0.0226553722 0.0225719721 0.0022551172 5.3713e−12
0.0106644656 0.0107875835 0.0106950942 0.0106721134 5.8762e−11
0.00613945693 0.00626790650 0.00617127881 0.00614739440 2.2151e−10Figure 3: Re
ord of the 5 highest eigenvalues of the Karhunen-Loève de
omposition of the stationaryOrnstein-Uhlenbe
k pro
ess de�ned by the SDE drt = −θrtdt + σdWt, r0 ∼ N

(
0, 1

2

).absolute di�eren
e between the 
losed-form expression and the approximation on a 300 points regularmesh of [0, 1]. The tested 
ases are the Brownian motion, the Brownian bridge and the stationaryOrnstein-Uhlenbe
k pro
ess de�ned by the SDE (16) with σ = 1 and θ = 1.3 Quantization of the fra
tional Brownian motionThe normalized fra
tional Brownian motion BH , is a 
entered Gaussian pro
ess on [0, T ], whi
h has thefollowing 
ovarian
e fun
tion:
ΓBH (t, s) =

1

2

(
|t|2H + |s|2H − |s − t|2H

)
, (17)where H ∈ (0, 1) is 
alled the Hurst parameter. If H = 1

2 then the pro
ess is the standard Brownianmotion.A simple appli
ation of the Nyström method presented in se
tion 1 produ
es regularly shaped fun
-tional quantizers of the fra
tional Brownian motion. In �gure 5, a (5 × 2 × 2)−produ
t quantizer of thefra
tional Brownian motion with 3 di�erent values of the Hurst parameter is plotted.7



Ri
hardson-Romberg
50 − 100 − 200 e1 e2 e3 e4 e5absolute errorStandardBrownian motion 3.8769e−6 3.4909e−5 9.6779e−5 1.9053e−3 3.1558e−3on [0, 1]StandardBrownian bridge 1.5505e−5 6.2096e−5 1.1398e−3 2.4863e−3 3.8531e−3on [0, 1]Stationary Ornstein-Uhlenbe
kpro
ess on [0, 1] 3.2257e−6 2.1355e−5 6.8185e−5 1.4614e−3 2.5523e−3with σ = 1 and θ = 1Figure 4: Re
ord of the biggest absolute error on the Karhunen-Loève eigenfun
tions approximation bythe Ri
hardson-Romberg extrapolated trapezoidal Nyström method. The number of time steps used forthe 3 steps interpolation are 50, 100 and 200. 300 equally spa
ed points on [0, 1] were tested. Ea
h
olumn 
orresponds to one eigenfun
tion.PSfrag repla
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Figure 5: (5 × 2 × 2)−produ
t quantizer of fra
tional Brownian motions on [0, 1] with Hurst exponent
H = 0.3 (left), H = 0.5 (middle) and H = 0.7 (right).Still, for H < 1

2 , the 
ovarian
e fun
tion of the fra
tional Brownian motion has singularities thatbreak the 
onvergen
e of the trapezoidal integration rule in even powers of the step sizes. Indeed, thederivative of t → ΓBH (t, s) has an in�nite limit for t → 0+ and for (t → s− or t → s+). It breaks alsothe 
onvergen
e of the whole asso
iated Nyström method in even powers of the step sizes. In [1, 5, 20℄,methods to handle su
h boundary and diagonal singularities are proposed. We will deal with this inse
tion 3.1However, it is not the 
ase for H ≥ 1
2 , so that we 
an be 
on�dent in the results of this method in this
ase. In table 6, we report the 5 highest Karhunen-Loève eigenvalues of the fra
tional Brownian motionon [0, 1] with Hurst exponent H = 0.7. The number of time steps are 128, 256 and 512. Last 
olumnyields the 
orresponding three-steps Ri
hardson-Romberg extrapolation. All the 
omputation has beenperformed with an o
tuple pre
ision �oating point number implementation to in
rease the a

ura
y ofthe 513× 513-matrix eigensystem 
omputation. (Let us pre
ise that in the 
ase of the Brownian motionon [0, 1], when performing the same 
omputation, we get an absolute error smaller than 1e−15 for the�ve �rst eigenvalues.)3.1 Kernel singularities when H <

1

2As pointed out above, the 
ovarian
e fun
tion of the fra
tional Brownian has a boundary singularity for
t → 0+ and a diagonal singularity. In this se
tion, we will use 
lassi
al methods to handle this kind ofsingularities. See [1, 5, 20℄ for a review of these method.

8



Trapezoidal Trapezoidal Trapezoidal TrapezoidalNyström Nyström Nyström Nyström
128 points 256 points 512 points 128 − 256 − 512 Ri
hardson-Romberg

0.374536638 0.374533535 0.374532774 0.374532521757236
0.0250351543 0.0250343274 0.0250341354 0.0250340726875501
0.00728913038 0.00728860123 0.00728848368 0.0072884458064217
0.00322117252 0.00322075790 0.00322066901 0.0032206406932789
0.00176153269 0.00176116702 0.00176109039 0.00176106615722872Figure 6: Re
ord of the 5 highest eigenvalues of the fra
tional Brownian motion on [0, 1] with Hurstexponent H = 0.7.3.1.1 Handling the boundary singularityChange of variableThe singular behavior of the fra
tional Brownian motion's 
ovarian
e fun
tion ΓBH de�ned in equation(17) 
an be removed by a 
hange of variable. The 
hange of variable u = t2H and v = s2H in integral(9) yields:

∫ T 2H

0

ΓBH

(

u
1

2H , v
1

2H

)

fk

(

v
1

2H

) 1

2H
v

1

2H
−1dv = λkfk

(

u
1

2H

)

. (18)(The se
ond 
hange of variable is done to preserve the symmetry of the Kernel.)This 
omes to
∫ T 2H

0

1

2

(

|u| + |v| − |u 1

2H − v
1

2H |2H
)

fk

(

v
1

2H

) 1

2H
v

1

2H
−1dv = λkfk

(

u
1

2H

)

. (19)Quadrature rule on a single intervalWe now derive a quadrature rule on [0, T ] with respe
t to the weight fun
tion w(v) = 1
2H v

1

2H
−1 =

w(v) = 1
2H vα with α := 1

2H − 1. The aim is to make the quadrature rule exa
t with a�ne fun
tions asthe trapezoidal quadrature rule is, in the 
ase of an integration with a 
onstant weight.
∫ r

l

1

2H
xα(ax + b)dx = wl(al + b) + wr(ar + b) ∀(a, b) ∈ R

2.This yields
1

2H

(
a

α + 2
(rα+2 − lα+2) +

b

α + 1
(rα+1 − lα+1)

)

= a(wll + wrr) + b(wl + wr) ∀(a, b) ∈ R
2.i.e. (

l r

1 1

)(
wl

wr

)

=

( 1
2H

1
α+2

(
rα+2 − lα+1

)

1
2H

1
α+1

(
rα+1 − lα+1

)

)

.The solution of the linear system is
wl =

1

2H

(α + 1)lα+2 + rα+2 − (α + 2)lα+1r

(α + 1)(α + 2)(r − l)
, wr =

1

2H

(α + 1)rα+2 + lα+2 − (α + 2)rα+1l

(α + 1)(α + 2)(r − l)
.This is

wl =
l

1

2H
+1 + 2Hr

1

2H
+1 − (2H + 1)l

1

2H r

(2H + 1)(r − l)
, wr =

r
1

2H
+1 + 2Hl

1

2H
+1 − (2H + 1)r

1

2H l

(2H + 1)(r − l)
.Quadrature rule for equally spa
ed abs
issasLet us now 
onsider the equally spa
ed abs
issas points xi = iT

n , i = 0, 1, · · · , n. We now use theseweights n times to integrate on intervals (x2H
0 , x2H

1 ), (x2H
1 , x2H

2 ), · · · , (x2H
n−1, x

2H
n ) to obtain the extendedrule of quadrature. The 
onvergen
e rate of this method is the same as the trapezoidal rule.9



3.1.2 Handling the diagonal singularityWe now have to handle the diagonal singularity |u − v|2H in equation (9). One 
lassi
al method if touse the smoothness of the solution by subtra
ting of the singularity.
∫ T

0

ΓBH (t, s)f(s)ds =

∫ T

0

ΓBH (t, s) (f(s) − f(t)) ds + r(t)f(t),where r(t) =
∫ T

0 ΓBH (t, s)ds. The dis
retized eigenvalue problem is now transformed to
λkfk(ti) =

n∑

j=1

wjKij (fk(tj) − fk(ti)) + r(ti)fk(ti)

=
n∑

j=1

wjKijfk(tj) +

(

r(ti) −
n∑

j=0

wjKij

)

fk(ti).
(20)We now de�ne the diagonal matrix D = diag(wi)1≤i≤n and D1/2 = diag(

√
wi)1≤i≤n as in se
tion 1.Moreover, we denote ∆ = diag

(

r(ti) −
n∑

j=0

wjKij

)

1≤i≤n

.Equation (20) writes
λkfk = K · Dfk + ∆fk.Multiplying by D

1

2 yields λh =
(

D
1

2 · K · D 1

2 + ∆
)

h, with h = D
1

2 f . As a 
onsequen
e, we obtainagain a symmetri
 matrix eigenvalue problem. In the 
ase of the fra
tional Brownian motion, thefun
tion r(t) =
∫ T

0 ΓBH (t, s)ds is derived expli
itly:
r(t) =

1

2

(
T 2H+1 − u2H+1

2H + 1
+ u2HT − (T − u)2H+1

2H + 1

)

.3.1.3 Optimal quantization of the fra
tional Brownian motionWe now use this approximation of the Karhunen-Loève basis to perform an optimal quantization of thefra
tional Brownian motion with a 50-100-200 three-step Ri
hardson-Romberg extrapolated Nyströmmethod.In �gure 7, we display the quadrati
 optimal N−quantizer of the fra
tional Brownian motion on [0, 1]with Hurst exponent H = 0.25 and N = 20. In this 
ase, the quantization dimension is 3.PSfrag repla
ements
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0.2 0.4 0.6 0.8Figure 7: Quadrati
 N -optimal quantizer of the fra
tional Brownian motion on [0, 1] with Hurst's pa-rameter H = 0.25 and N = 20.
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4 Fun
tional strati�
ation of the fra
tional Brownian motionIn this se
tion, we experiment the fun
tional quantization based strati�ed sampling algorithm proposedin [4℄ with the fra
tional Brownian motion.4.1 Ba
kground on strati�
ationLet E be a separable Hilbert spa
e. The idea of strati�
ation is to lo
alize the Monte-Carlo simulationon the elements of a measurable partition of the state spa
e of a L2 random variable X : (Ω,A) → (E, ε).
• Let (Ai)i∈I be a �nite ε-measurable partition of a E. The sets Ai are 
alled strata. Assume thatthe weights pi = P(X ∈ Ai) are known for i ∈ I and stri
tly positive.
• Let us de�ne the 
olle
tion of independent random variables (Xi)i∈I with distribution L(X |X ∈

Ai).Let F : (E, ε) → (R,B(R)) su
h that E[F 2(X)] < +∞.
E[F (X)] =

∑

i∈I

E[1{Xi∈Ai}F (X)] =
∑

i∈I

piE[F (X)|X ∈ Ai]

=
∑

i∈I

piE[F (Xi)].The strati�
ation 
on
ept 
omes into play now. Let M be the global budget allo
ated to the 
omputationof E[F (X)] and Mi = qiM the budget allo
ated to 
ompute E[F (Xi)] in ea
h stratus. We assume that
∑

i∈I

qi = 1. This leads to de�ne the (unbiased) estimator of E[F (X)]:
F (X)

I

M :=
∑

i∈I

pi
1

Mi

Mi∑

k=1

F (Xk
i ), (21)where (Xk

i )1≤k≤Mi
is a L(X |X ∈ Ai)-distributed random sample.Proposition 4.1. With the same notations:

Var
(
F (X)

I

M

)
=

1

M

∑

i∈I

p2
i

qi
σ2

F,i, (22)where σ2
F,i = Var(F (X)|X ∈ Ai) = Var(F (Xi)) ∀i ∈ I.The proof 
an be found in [4℄. Optimizing the simulation allo
ation to ea
h stratus amounts to solvingthe following minimization problem:

min
(qi)∈PI

∑

i∈I

p2
i

qi
σ2

F,i where PI =

{

(qi)i∈I ∈ R
I
+

∣
∣
∣

∑

i∈I

qi = 1

}

. (23)In [4℄, Corlay and Pagès pointed out theoreti
al aspe
ts of quantization that lead to a strong link betweenthe problem of optimal L2-quantization of a random variable and the varian
e redu
tion that 
an bea
hieved by strati�
ation. Three types of allo
ation rules for the budgets (qi)i∈I are proposed:
• The "sub-optimal rule" is to set

qi = pi, i ∈ I. (24)The two motivations for this 
hoi
e are the fa
ts that the weights pi are known and be
ause italways redu
es the varian
e.
• The "optimal rule" is the solution of the 
onstrained minimization problem (23). The S
hwartzinequality yields

∑

i∈I

piσF,i =
∑

i∈I

piσF,i√
qi

√
qi ≤

(
∑

i∈I

p2
i σ

2
F,i

qi

)1/2(
∑

i∈I

qi

)

︸ ︷︷ ︸

=1

1/2

.11



As a 
onsequen
e, the solution of the minimization problem 
orresponds to the equality 
ase intothe S
hwartz inequality. Hen
e the solution of the minimization problem is given by
q∗i =

piσF,i
∑

j∈I

pjσF,j
, i ∈ I (25)and the 
orresponding minimal varian
e is given by (∑
i∈I

piσF,i

)2

.The 
ounterpart of this method is that we do not know expli
itly the solution (q∗i )i∈I . In [10℄, Étoréand Jourdain proposed an algorithm for adaptively modifying the proportion of further drawingsin ea
h stratum, that 
onverges to the optimal allo
ation. This 
an be used in a general framework.Another pra
ti
al solution would be to implement a simple prior rough estimation of the optimalallo
ation.
• The "Lips
hitz optimal" rule. When the partition (Ai)i∈I is a Voronoi partition asso
iated withan optimal quantizer of X , Corlay and Pagès 
onsidered the setting

qi = σi, i ∈ I, (26)where σi is the lo
al inertia of the random variable X , σ2
i = E

[

|X − E[X |X ∈ Ai]|2
∣
∣
∣X ∈ Ai

]

.It is proved that this setting has a uniform e�
ien
y among the 
lass of Lips
hitz 
ontinuousfun
tionals. Moreover, lo
al inertia (σi)i∈I are known. This solution over
omes the "sub-optimal
hoi
e" in every test done in [4℄.4.2 On the fun
tional strati�
ation of Gaussian pro
essesHere, we assume that X is an R-valued Gaussian pro
ess on [0, T ]. We are interested in the value of
E[F (Xt0 , Xt1 , · · · , Xtn

)] where 0 = t0 ≤ t1 ≤ · · · ≤ tn = T are n + 1 dates of interest for the underlyingpro
ess. Let us assume that χ ∈ Opq(X, N) is a K-L produ
t quantizer of X . The 
odebook asso
iatedwith this produ
t quantizer is the set of the paths of the form
χi =

∑

n≥1

√

λX
n x

(Nn)
in

eX
n , i = {i1, · · · , in, · · · },where (eX

n , λX
n ) is the Karhunen-Loève de
omposition of the pro
ess X on [0, T ] and xNn

in
is the inthelement of an optimal quantizer of size Nn of the standard one-dimensional Gaussian distribution.We now need to be able to simulate the 
onditional distribution

L(X |X ∈ Ai)where Ai is the slab asso
iated with χi in the 
odebook.To simulate the 
onditional distribution L(X |X ∈ Ai), we will:
• First, simulate the �rst K-L 
oordinates of X . The expli
it simulation algorithm is available in [4℄
• Then simulate the 
onditional distribution of the marginals of the Gaussian pro
ess, its �rst 
oor-dinates being settled.In this setting, the aim is to simulate the 
onditional distribution

L
(

Xt0 , · · · , Xtn

∣
∣
∣

∫ T

0

Xse
X
1 ds,

∫ T

0

Xse
X
2 (s)ds, · · · ,

∫ T

0

Xse
X
d (s)ds

) (27)where (Xt)t∈[0, T ] is a L2
R-valued Gaussian pro
ess, and (eX

k , λX
k )k∈N∗ is the Karhunen-Loève systemasso
iated with the pro
ess X .Conditional simulation: In [4℄, two solutions are proposed for the simulation of the 
onditionaldistribution (27). 12



• The �rst one is the naive Cholesky method for Gaussian ve
tor simulation, whi
h has a quadrati

omplexity in the number of time steps. This �rst simulation s
heme was not 
ompetitive forlinearly simulable pro
esses as the Brownian motion. In the following, we will mention this methodas the brute for
e method.
• The other solution, detailed in [4℄ requires a prior simulation of the un
onditional distributionof (Xt0 , · · · , Xtn

) and has then a linear additional 
ost. This algorithm will be mentioned inthe following as the linear 
onditioning algorithm. For Gaussian pro
esses whi
h have a linearsimulation s
heme in the un
onditional 
ase (as the Ornstein-Uhlenbe
k pro
ess, the Brownianbridge and the Brownian motion), this method is of high interest.4.3 The 
ase of the fra
tional Brownian motionPossible methods for simulating the fra
tional Brownian motion on a s
hedule t0 < t1 < · · · < tn are
• the naive Cholesky method, that has quadrati
 
omplexity,
• and the 
ir
ulant matrix method whi
h has a O(n ln(n)) 
omplexity [6, 22℄. The 
ir
ulant matrixmethod is also available for the multifra
tional Brownian motion [23℄.No exa
t simulation s
heme with a linear 
omplexity exists for the fra
tional Brownian motion. Still,approximate method with linear 
omplexity exists. If we 
hoose the Cholesky method, there is no interestto use the linear 
onditioning algorithm proposed in [4℄. The brute for
e Cholesky method is adapted tothis situation.In every other 
ase, if the un
onditional simulation method has smaller 
omplexity, we have interest touse the linear 
onditioning algorithm whi
h has a linear additional 
ost to the un
onditional simulation.In �gure 8, we plot a few paths of the 
onditional distribution of the fra
tional Brownian motion withHurst's parameter H = 0.3 knowing that they belong to a given L2 Voronoi 
ell.PSfrag repla
ements
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0.5 1.5 2.5Figure 8: Plot of a few paths of the 
onditional distribution of the fra
tional Brownian motion withHurst's parameter H = 0.3 on [0, 3], knowing that its path belong to the L2 Voronoi 
ell of the highlighted
urve in the quantizer.4.4 Gaussian pro
ess re
onstru
tionThe �rst numeri
al test of the fun
tional strati�
ation of the fra
tional Brownian motion is a method tovalidate both the eigenfun
tion 
omputation by the Nyström method and the fun
tional strati�
ationalgorithm.Indeed, one 
an rebuild the 
onsidered Gaussian pro
ess from its strati�
ation. This yields thefollowing simulation algorithm: 13



• First, simulate the dis
rete weighted distribution of the strata index (i, pi)i∈I to sele
t the strata.
• Then simulate the 
onditional distribution L

(

Xt0 , · · · , Xtn

∣
∣
∣X ∈ Ai

) of the Gaussian pro
ess inthe strata by the method des
ribed above.The result should be distributed a

ording to the distribution of the underlying Gaussian pro
ess. Intable 9, we report the 
ovarian
e stru
ture E[Xti
Xtj

]1≤i,j≤n estimated by a Monte-Carlo simulation when
X is a fra
tional Brownian motion with Hurst's parameter H = 0.7. The tested s
hedule is (iT

n )0≤i≤nwith T = 1 and n = 5. The produ
t de
omposition of the quantization is 10 × 5 × 2.
0.105061 0.138629 0.15846 0.173817 0.186687

0.138629 0.277258 0.330656 0.365844 0.394071

0.15846 0.330656 0.489116 0.557871 0.605929

0.173817 0.365844 0.557871 0.73168 0.813313

0.186687 0.394071 0.605929 0.813313 1

0.105141 0.138748 0.158596 0.173959 0.186824

0.138748 0.277417 0.330885 0.366075 0.394372

0.158596 0.330885 0.489454 0.558177 0.606266

0.173959 0.366075 0.558177 0.731923 0.813579

0.186824 0.394372 0.606266 0.813579 1.0003Figure 9: Theoreti
al (left) and estimated (right) 
ovarian
e E[Xti
Xtj

] of the rebuilt fra
tional Brownianmotion with H = 0.7. The number of generated paths for this Monte-Carlo simulation was 1 · 107.In every tested 
ase, when generating table 9, the theoreti
al value lies in the 95% 
on�den
e interval.These 
on�den
e intervals were not displayed for briefness. We obtain the same order of a

ura
y withother values of H ∈ (0, 1).4.5 Appli
ation to option pri
ingA sto
hasti
 integral with respe
t to the fra
tional Brownian motion has been introdu
ed in [9℄ by Helliotand van der Hoek, and in [3℄ by Biagini, Øksendal, Sulem and Wallner. They proposed a generalizationof the Bla
k-S
holes model. As in the 
lassi
al Bla
k-S
holes market, two assets are available:
• A risk-free asset whose pri
e is given by

dS0
t = rS0

t dt (28)
• and a risky asset whose pri
e is given by

dSt = µStdt + σStdBH
t , (29)where r, µ and σ are 
onstants and BH is fra
tional Brownian motion with Hurst parameter H .It has been shown that this market presents no arbitrage opportunity and is 
omplete. Moreover, thesolution of the sto
hasti
 di�erential equation (29) is given by

St = S0 exp

(

σBH
t + µt − 1

2
σ2t2H

)

. (30)The following theorem, prooved in [9℄ deals with the pri
e of a European 
all option.Theorem 4.2 (Fra
tional Bla
k-S
holes Formula). The pri
e at every time t ∈ [0, T ] of a European 
alloption with strike pri
e K and maturity T is given by
C(t, St) = StN (d1) − Ke−r(T−y)N (d2) (31)where

d1 =
ln
(

St

K

)
+ r(T − t) + σ2

2 (T 2H − t2H)

σ
√

T 2H − t2H
(32)

d2 =
ln
(

St

K

)
+ r(T − t) − σ2

2 (T 2H − t2H)

σ
√

T 2H − t2H
(33)This 
losed-form expression is used to ben
hmark our simulation s
heme of the fra
tional Brownianmotion. 14



4.5.1 Ben
hmark with a Barrier option in the fra
tional Bla
k and S
holes modelHere, we ben
hmark the numeri
al method for a path dependent option in the 
ase of a Barrier optionin the fra
tional Bla
k and S
holes model. For the sake of simpli
ity, we 
onsider a log-normal Bla
kand S
holes di�usion with no drift (no interest rate and no dividend). The 
hosen Hurst exponent is
H = 0.3. The numeri
al results are reported in table 10.The results are displayed for di�erent values of the initial spot S, the strike K, the barrier B, thevolatility σ, the maturity T and the number of equally spa
ed �xing dates n.In this table, the �rst 
olumn 
orresponds to a simple Monte-Carlo estimator. The last three 
olumns
orrespond to a strati�ed sampling estimator with di�erent simulation allo
ation for ea
h strata.The "sub-optimal weights" 
olumn stands for the allo
ation budget of equation (24). The "Lip.-optimal weights" 
olumn stand for the "universal strati�
ation" budget allo
ation of equation (26).Both these two 
ase have expli
it allo
ation rules. Last 
olumn, "Optimal weights" 
orresponds to anestimation of the optimal budget allo
ation given in expression (25).Simple Strat. Estimator Strat. Estimator Strat. EstimatorParameters Estimator sub-optimal weights Lip.-optimal weights Optimal weights

S = 100, K = 100 12.5947 12.5674 12.5566 12.5890
B = 125, σ = 0.3, [12.4429, 12.7466] [12.4732, 12.6615] [12.4654, 12.6477] [12.5201, 12.6579]
T = 1.5, n = 11 Var = 600.5711 Var = 230.8692 Var = 216.3442 Var = 123.5426

S = 100, K = 100 1.3412 1.3826 1.3613 1.3769
B = 200, σ = 0.3, [1.2677, 1.4146] [1.3140, 1.4511] [1.3002, 1.4224] [1.3530, 1.4009]

T = 1, n = 11 Var = 140.5978 Var = 122.2808 Var = 97.1538 Var = 14.9352Figure 10: Numeri
al results for the Up In Call option, with 100 = ×5 × 2 stratas.We noti
e that the quantization based strati�ed sampling method redu
es noti
eably the varian
e of theMonte-Carlo estimator. The universal strati�
ation allo
ation rule (26) proposed in [4℄ over
omes thesub-optimal weight allo
ation. Moreover, the "optimal allo
ation" estimation yields a better varian
eredu
tion fa
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